scholarly journals All-optical reversible single-photon isolation at room temperature

2021 ◽  
Vol 7 (12) ◽  
pp. eabe8924
Author(s):  
Ming-Xin Dong ◽  
Ke-Yu Xia ◽  
Wei-Hang Zhang ◽  
Yi-Chen Yu ◽  
Ying-Hao Ye ◽  
...  

Nonreciprocal devices operating at the single-photon level are fundamental elements for quantum technologies. Because magneto-optical nonreciprocal devices are incompatible for magnetic-sensitive or on-chip quantum information processing, all-optical nonreciprocal isolation is highly desired, but its realization at the quantum level is yet to be accomplished at room temperature. Here, we propose and experimentally demonstrate two regimes, using electromagnetically induced transparency (EIT) or a Raman transition, for all-optical isolation with warm atoms. We achieve an isolation of 22.52 ± 0.10 dB and an insertion loss of about 1.95 dB for a genuine single photon, with bandwidth up to hundreds of megahertz. The Raman regime realized in the same experimental setup enables us to achieve high isolation and low insertion loss for coherent optical fields with reversed isolation direction. These realizations of single-photon isolation and coherent light isolation at room temperature are promising for simpler reconfiguration of high-speed classical and quantum information processing.

2006 ◽  
Vol 43 ◽  
pp. 1373-1376 ◽  
Author(s):  
J-C Villégier ◽  
B Delaet ◽  
Ph Feautrier ◽  
L Frey ◽  
C Delacour ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 160 ◽  
Author(s):  
David Ziemkiewicz ◽  
Sylwia Zielińska - Raczyńska

By mapping photons into the sample of cuprous oxide with Rydberg excitons, it is possible to obtain a significant optical phase shift due to third-order cross-Kerr nonlinearities realized under the conditions of electromagnetically induced transparency. The optimum conditions for observation of the phase shift over π in Rydberg excitons media are examined. A discussion of the application of the cross-phase modulations in the field of all-optical quantum information processing in solid-state systems is presented.


Author(s):  
Lei Tang ◽  
Keyu Xia

Optical isolation is important for protecting a laser from damage due to the detrimental back reflection of light. It typically relies on breaking Lorentz reciprocity and normally is achieved via the Faraday magneto-optical effect, requiring a strong external magnetic field. Single-photon isolation, the quantum counterpart of optical isolation, is the key functional component in quantum information processing, but its realization is challenging. In this chapter, we present all-optical schemes for isolating the backscattering from single photons. In the first scheme, we show the single-photon isolation can be realized by using a chiral quantum optical system, in which a quantum emitter asymmetrically couples to nanowaveguide modes or whispering-gallery modes with high optical chirality. Secondly, we propose a chiral optical Kerr nonlinearity to bypass the so-called dynamical reciprocity in nonlinear optics and then achieve room-temperature photon isolation with low insertion loss. The concepts we present may pave the way for quantum information processing in an unconventional way.


2011 ◽  
Vol 19 (23) ◽  
pp. 22723 ◽  
Author(s):  
Xiao-song Ma ◽  
Stefan Zotter ◽  
Nuray Tetik ◽  
Angie Qarry ◽  
Thomas Jennewein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document