scholarly journals Fabrication of High-Speed Single Photon Detectors in NbN for Quantum Information Processing

2006 ◽  
Vol 43 ◽  
pp. 1373-1376 ◽  
Author(s):  
J-C Villégier ◽  
B Delaet ◽  
Ph Feautrier ◽  
L Frey ◽  
C Delacour ◽  
...  
2021 ◽  
Vol 7 (12) ◽  
pp. eabe8924
Author(s):  
Ming-Xin Dong ◽  
Ke-Yu Xia ◽  
Wei-Hang Zhang ◽  
Yi-Chen Yu ◽  
Ying-Hao Ye ◽  
...  

Nonreciprocal devices operating at the single-photon level are fundamental elements for quantum technologies. Because magneto-optical nonreciprocal devices are incompatible for magnetic-sensitive or on-chip quantum information processing, all-optical nonreciprocal isolation is highly desired, but its realization at the quantum level is yet to be accomplished at room temperature. Here, we propose and experimentally demonstrate two regimes, using electromagnetically induced transparency (EIT) or a Raman transition, for all-optical isolation with warm atoms. We achieve an isolation of 22.52 ± 0.10 dB and an insertion loss of about 1.95 dB for a genuine single photon, with bandwidth up to hundreds of megahertz. The Raman regime realized in the same experimental setup enables us to achieve high isolation and low insertion loss for coherent optical fields with reversed isolation direction. These realizations of single-photon isolation and coherent light isolation at room temperature are promising for simpler reconfiguration of high-speed classical and quantum information processing.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2673-2692
Author(s):  
Lixing You

AbstractThe superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher counting rate, and lower timing jitter when compared with those exhibited by its counterparts. SNSPDs have been extensively applied in quantum information processing, including quantum key distribution and optical quantum computation. In this review, we present the requirements of single-photon detectors from quantum information, as well as the principle, key metrics, latest performance issues, and other issues associated with SNSPD. The representative applications of SNSPDs with respect to quantum information will also be covered.


Author(s):  
Lei Tang ◽  
Keyu Xia

Optical isolation is important for protecting a laser from damage due to the detrimental back reflection of light. It typically relies on breaking Lorentz reciprocity and normally is achieved via the Faraday magneto-optical effect, requiring a strong external magnetic field. Single-photon isolation, the quantum counterpart of optical isolation, is the key functional component in quantum information processing, but its realization is challenging. In this chapter, we present all-optical schemes for isolating the backscattering from single photons. In the first scheme, we show the single-photon isolation can be realized by using a chiral quantum optical system, in which a quantum emitter asymmetrically couples to nanowaveguide modes or whispering-gallery modes with high optical chirality. Secondly, we propose a chiral optical Kerr nonlinearity to bypass the so-called dynamical reciprocity in nonlinear optics and then achieve room-temperature photon isolation with low insertion loss. The concepts we present may pave the way for quantum information processing in an unconventional way.


2011 ◽  
Vol 19 (23) ◽  
pp. 22723 ◽  
Author(s):  
Xiao-song Ma ◽  
Stefan Zotter ◽  
Nuray Tetik ◽  
Angie Qarry ◽  
Thomas Jennewein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document