scholarly journals The contribution of low contrast–preferring neurons to information representation in the primary visual cortex after learning

2021 ◽  
Vol 7 (48) ◽  
Author(s):  
Rie Kimura ◽  
Yumiko Yoshimura
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel J Millman ◽  
Gabriel Koch Ocker ◽  
Shiella Caldejon ◽  
India Kato ◽  
Josh D Larkin ◽  
...  

Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.


2015 ◽  
Vol 114 (6) ◽  
pp. 3326-3338 ◽  
Author(s):  
H. Meffin ◽  
M. A. Hietanen ◽  
S. L. Cloherty ◽  
M. R. Ibbotson

Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434–444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155–1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457–3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.


1999 ◽  
Vol 16 (4) ◽  
pp. 755-770 ◽  
Author(s):  
JEAN LORENCEAU ◽  
LAURE ZAGO

Recovering the velocity of objects moving in the visual field requires both the integration and segmentation of local neuronal responses elicited by moving stimuli in primary visual cortex. Herein, we investigate the effects of the contrast, density, spatial proximity, spatial frequency, and spatial configuration of component motions on these complementary processes. Measuring the ability of human observers to discriminate the global direction of motion displays composed of spatially distributed patches of drifting gratings whose motion is locally ambiguous, we provide psychophysical evidence that linking component motion across space is facilitated at low contrast and high patch density. Furthermore, direction discrimination depends on the spatial frequency of component gratings and is more accurate for spatial configurations that contain “virtual” L junctions as compared to configurations composed of “virtual” T junctions. We suggest that the conditions yielding global motion coherence can be accounted for by the existence of anisotropic cooperative/competitive, contrast-dependent, long-range interactions among oriented direction-selective units. In addition, we bring evidence that motion segmentation processes rely upon the processing of moving local spatial discontinuities. The results are discussed in the light of recent psychophysical and physiological evidence that long-range excitatory and inhibitory interactions within primary visual cortex modulate perceptual linking.


Sign in / Sign up

Export Citation Format

Share Document