Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks"

Science ◽  
2004 ◽  
Vol 305 (5687) ◽  
pp. 1107c-1107c ◽  
Author(s):  
Y. Artzy-Randrup
2018 ◽  
Vol 16 (06) ◽  
pp. 1850024 ◽  
Author(s):  
Sabyasachi Patra ◽  
Anjali Mohapatra

Networks are powerful representation of topological features in biological systems like protein interaction and gene regulation. In order to understand the design principles of such complex networks, the concept of network motifs emerged. Network motifs are recurrent patterns with statistical significance that can be seen as basic building blocks of complex networks. Identification of network motifs leads to many important applications, such as understanding the modularity and the large-scale structure of biological networks, classification of networks into super-families, protein function annotation, etc. However, identification of network motifs is challenging as it involves graph isomorphism which is computationally hard. Though this problem has been studied extensively in the literature using different computational approaches, we are far from satisfactory results. Motivated by the challenges involved in this field, an efficient and scalable network Motif Discovery algorithm based on Expansion Tree (MODET) is proposed. Pattern growth approach is used in this proposed motif-centric algorithm. Each node of the expansion tree represents a non-isomorphic pattern. The embeddings corresponding to a child node of the expansion tree are obtained from the embeddings of the parent node through vertex addition and edge addition. Further, the proposed algorithm does not involve any graph isomorphism check and the time complexities of these processes are [Formula: see text] and [Formula: see text], respectively. The proposed algorithm has been tested on Protein–Protein Interaction (PPI) network obtained from the MINT database. The computational efficiency of the proposed algorithm outperforms most of the existing network motif discovery algorithms.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2019 ◽  
Vol 11 (9) ◽  
pp. 2484 ◽  
Author(s):  
Ying Jin ◽  
Ye Wei ◽  
Chunliang Xiu ◽  
Wei Song ◽  
Kaixian Yang

The air passenger transport network system is an important agent of social and economic connections between cities. Studying on the airline network structure and providing optimization strategies can improve the airline industry sustainability evolution. As basic building blocks of broad networks, the concept of network motifs is cited in this paper to apply to the structural characteristic analysis of the passenger airline network. The ENUMERATE SUBGRAPHS (G, k) algorithm is used to identify the motifs and anti-motifs of the passenger airline network in China. A total of 37 airline companies are subjected to motif identification and exploring the structural and functional characteristics of the airline networks corresponding to different motifs. These 37 airline companies are classified according to the motif concentration curves into three development stages, which include mono-centric divergence companies at the low-level development stage, transitional companies at the intermediate development stage, and multi-centric and hierarchical companies at the advanced development stage. Finally, we found that adjusting the number of proper network motifs is useful to optimize the overall structure of airline networks, which is profitable for air transport sustainable development.


Sign in / Sign up

Export Citation Format

Share Document