RNA Polymerase IV Functions in Paramutation in Zea mays

Science ◽  
2009 ◽  
Vol 323 (5918) ◽  
pp. 1201-1205 ◽  
Author(s):  
K. F. Erhard ◽  
J. L. Stonaker ◽  
S. E. Parkinson ◽  
J. P. Lim ◽  
C. J. Hale ◽  
...  
PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009243
Author(s):  
Natalie C. Deans ◽  
Brian J. Giacopelli ◽  
Jay B. Hollick

Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Todd Blevins ◽  
Ram Podicheti ◽  
Vibhor Mishra ◽  
Michelle Marasco ◽  
Jing Wang ◽  
...  

In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3’ termini. The 24 nt siRNAs primarily correspond to the 5’ or 3’ ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.


Weed Science ◽  
1972 ◽  
Vol 20 (4) ◽  
pp. 364-366 ◽  
Author(s):  
Donald Penner ◽  
Roy W. Early

Trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 10−5M applied to etiolated corn(Zea maysL. ‘Michigan 500′) seedlings 6 or 12 hr before the isolation of chromatin from the roots markedly reduced ribonucleic acid (RNA) synthesis supported by the chromatin. The addition ofEscherichia coliRNA polymerase failed to overcome the inhibition. Trifluralin increased the melting temperature of the chromatin. The presence of trifluralin during the isolation and reaction procedure inhibited RNA synthesis indicating possible trifluralin binding to the chromatin with subsequent reduction of template availability for transcription. Trifluralin did not inhibit chromatin activity in soybean [Glycine max(L.) Merr. ‘Hark’] seedlings.


Sign in / Sign up

Export Citation Format

Share Document