scholarly journals Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009243
Author(s):  
Natalie C. Deans ◽  
Brian J. Giacopelli ◽  
Jay B. Hollick

Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process.

Science ◽  
2009 ◽  
Vol 323 (5918) ◽  
pp. 1201-1205 ◽  
Author(s):  
K. F. Erhard ◽  
J. L. Stonaker ◽  
S. E. Parkinson ◽  
J. P. Lim ◽  
C. J. Hale ◽  
...  

2020 ◽  
Vol 375 (1795) ◽  
pp. 20190417 ◽  
Author(s):  
Kaushik Panda ◽  
Andrea D. McCue ◽  
R. Keith Slotkin

The plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements (TEs), with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to TEs to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21–22 nt siRNAs, but the biogenesis and function of these siRNAs have been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21–22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21–22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21–22 nt siRNAs are also loaded into ARGONAUTE1 (AGO1), which is known to function in post-transcriptional gene regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21–22 nt siRNAs may function to regulate gene transcript abundance. Our data provide support for the existing model that in pollen Pol IV functions in gene regulation. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu-Hao Liou ◽  
Sameer K. Singh ◽  
Robert H. Singer ◽  
Robert A. Coleman ◽  
Wei-Li Liu

AbstractThe tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53’s DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II’s jaw that contacts downstream DNA. These findings suggest that p53’s functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.


2011 ◽  
Vol 40 (8) ◽  
pp. 3524-3537 ◽  
Author(s):  
Ana I. Prieto ◽  
Christina Kahramanoglou ◽  
Ruhi M. Ali ◽  
Gillian M. Fraser ◽  
Aswin S. N. Seshasayee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document