Slow Earthquakes Linked Along Dip in the Nankai Subduction Zone: Fig. 1

Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1502-1502 ◽  
Author(s):  
Hitoshi Hirose ◽  
Youichi Asano ◽  
Kazushige Obara ◽  
Takeshi Kimura ◽  
Takanori Matsuzawa ◽  
...  

We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were triggered by the acceleration of a long-term slow slip event in between. This correlation suggests that the slow slip might extend along-dip between the source areas of deeper and shallower slow earthquakes and thus could modulate the stress buildup on the adjacent megathrust rupture zone.

2021 ◽  
Author(s):  
Leonard Seydoux ◽  
Michel Campillo ◽  
René Steinmann ◽  
Randall Balestriero ◽  
Maarten de Hoop

<p>Slow slip events are observed in geodetic data, and are occasionally associated with seismic signatures such as slow earthquakes (low-frequency earthquakes, tectonic tremors). In particular, it was shown that swarms of slow earthquake can correlate with slow slip events occurrence, and allowed to reveal the intermittent behavior of several slow slip events. This observation was possible thanks to detailed analysis of slow earthquakes catalogs and continuous geodetic data, but in every case, was limited to particular classes of seismic signatures. In the present study, we propose to infer the classes of seismic signals that best correlate with the observed geodetic data, including the slow slip event. We use a scattering network (a neural network with wavelet filters) in order to find meaningful signal features, and apply a hierarchical clustering algorithm in order to infer classes of seismic signal. We then apply a regression algorithm in order to predict the geodetic data, including slow slip events, from the occurrence of inferred seismic classes. This allow to (1) identify seismic signatures associated with the slow slip events as well as (2) infer the the contribution of each classes to the overall displacement observed in the geodetic data. We illustrate our strategy by revisiting the slow-slip event of 2006 that occurred beneath Guerrero, Mexico.</p>


2020 ◽  
Author(s):  
Aitaro Kato ◽  
Shigeki Nakagawa

Abstract To improve our understanding of the long-term behavior of low-frequency earthquakes (LFEs) along the tremor belt of the Nankai subduction zone, we applied a matched filter technique to continuous seismic data recorded by a dense and highly sensitive seismic network over an 11 year window, April 2004 to August 2015. We detected a total of ~510,000 LFEs, or ~23× the number of LFEs in the JMA catalog for the same period. During long-term slow slip events (SSEs) in the Bungo Channel, a series of migrating LFE bursts intermittently occurred along the fault-strike direction, with slow hypocenter propagation. Elastic energy released by long-term SSEs appears to control the extent of LFE activity. We identify slowly migrating fronts of LFEs during major episodic tremor and slip (ETS) events, which extend over distances of up to 100 km and follow diffusion-like patterns of spatial evolution with a diffusion coefficient of ~10 4 m 2 /s. This migration pattern closely matches the spatio-temporal evolution of tectonic tremors reported by previous studies. At shorter distances, up to 15 km, we discovered rapid diffusion-like migration of LFEs with a coefficient of ~10 5 m 2 /s. We also recognize that rapid migration of LFEs occurred intermittently in many streaks during major ETS episodes. These observations suggest that slow slip transients contain a multitude of smaller, temporally clustered fault slip events whose evolution is controlled by a diffusional process.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Aitaro Kato ◽  
Shigeki Nakagawa

Abstract To improve our understanding of the long-term behavior of low-frequency earthquakes (LFEs) along the tremor belt of the Nankai subduction zone, we applied a matched filter technique to continuous seismic data recorded by a dense and highly sensitive seismic network over an 11-year window, April 2004 to August 2015. We detected a total of ~ 510,000 LFEs, or ~ 23 × the number of LFEs in the JMA catalog for the same period. During long-term slow slip events (SSEs) in the Bungo Channel, a series of migrating LFE bursts intermittently occurred along the fault-strike direction, with slow hypocenter propagation. Elastic energy released by long-term SSEs appears to control the extent of LFE activity. We identify slowly migrating fronts of LFEs during major episodic tremor and slip (ETS) events, which extend over distances of up to 100 km and follow diffusion-like patterns of spatial evolution with a diffusion coefficient of ~ 104 m2/s. This migration pattern closely matches the spatio-temporal evolution of tectonic tremors reported by previous studies. At shorter distances, up to 15 km, we discovered rapid diffusion-like migration of LFEs with a coefficient of ~ 105 m2/s. We also recognize that rapid migration of LFEs occurred intermittently in many streaks during major ETS episodes. These observations suggest that slow slip transients contain a multitude of smaller, temporally clustered fault slip events whose evolution is controlled by a diffusional process.


2020 ◽  
Author(s):  
Aitaro Kato ◽  
Shigeki Nakagawa

Abstract To improve our understanding of the long-term behavior of low-frequency earthquakes (LFEs) along the tremor belt of the Nankai subduction zone, we applied a matched filter technique to continuous seismic data recorded by a dense and highly sensitive seismic network over an 11 year window, April 2004 to August 2015. We detected a total of ~510,000 LFEs, or ~23× the number of LFEs in the JMA catalog for the same period. During long-term slow slip events (SSEs) in the Bungo Channel, a series of migrating LFE bursts intermittently occurred along the fault-strike direction, with slow hypocenter propagation. Elastic energy released by long-term SSEs appears to control the extent of LFE activity. We identify slowly migrating fronts of LFEs during major episodic tremor and slip (ETS) events, which extend over distances of up to 100 km and follow diffusion-like patterns of spatial evolution with a diffusion coefficient of ~10 4 m 2 /s. This migration pattern closely matches the spatio-temporal evolution of tectonic tremors reported by previous studies. At shorter distances, up to 15 km, we discovered rapid diffusion-like migration of LFEs with a coefficient of ~10 5 m 2 /s. We also recognize that rapid migration of LFEs occurred intermittently in many streaks during major ETS episodes. These observations suggest that slow slip transients contain a multitude of smaller, temporally clustered fault slip events whose evolution is controlled by a diffusional process.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Keita Chiba

AbstractThe b-value of the Gutenberg–Richter law represents the ratio of earthquake magnitude to frequency of occurrence and is inversely proportional to differential stress. Repeating long-term slow-slip events (SSEs) and low-frequency earthquakes (LFEs) occur at subducting plate interfaces and have stress-dependent characteristics near the interface. In this study, a comprehensive regional b-value distribution is produced for the western Nankai Trough region, which highlights the relationship between b-values, SSEs, and LFEs. b-values vary along the strike direction of the subducting plate and are significantly lower $$ \left( {b \sim 0.6} \right) $$b∼0.6 in central Shikoku district than elsewhere, where LFEs frequently occur. However, b-values in the source regions of other LFEs are moderate to high. These findings imply that b-values in the focal region are controlled by more than the LFE source process; indeed, if this source process were solely responsible, then high b-values would be expected. Meanwhile, the $$ V_{P} /V_{S} $$VP/VS and QP around the plate interface in central Shikoku estimated from seismic velocity and attenuation structure are smaller and larger than those in other regions with LFEs, respectively. SSEs with the migration toward central Shikoku also occurred during the analysis period, suggesting significant accumulation of shear stresses in the focal region, which reduced the b-values. These findings suggest that the spatial distributions of b-values are influenced by complicated stress and shear strength perturbations caused by SSEs and LFEs. On the other hand, the b-values in the region that underwent the greatest slip during the 1946 Nankai earthquake are not necessarily low, although the area covered by the b-value distribution is small owing to the lack of events on the updip side. Whereas the asperity areas of huge earthquakes are characterized by low b-values, the b-value distribution in the Nankai megathrust area is more complicated. It is considered that slow earthquakes, including SSEs and LFEs, are related to megathrust earthquakes via stress transfer from slow earthquakes to adjacent megathrust source regions. A unified analysis of b-values in the source regions of slow and megathrust earthquakes may be required to make precise estimates of the seismic hazard produced by a megathrust event.


2018 ◽  
Vol 722 ◽  
pp. 314-323 ◽  
Author(s):  
Kumiko Daiku ◽  
Yoshihiro Hiramatsu ◽  
Takanori Matsuzawa ◽  
Tomoyuki Mizukami

2016 ◽  
Vol 43 (3) ◽  
pp. 1066-1074 ◽  
Author(s):  
Ryota Takagi ◽  
Kazushige Obara ◽  
Takuto Maeda

Sign in / Sign up

Export Citation Format

Share Document