slip rate
Recently Published Documents


TOTAL DOCUMENTS

794
(FIVE YEARS 307)

H-INDEX

53
(FIVE YEARS 5)

Author(s):  
Guihua Chen ◽  
Xun Zeng ◽  
Zhongwu Li ◽  
Xiwei Xu

Abstract The fold-and-thrust belt along the northern margin of the Qaidam basin is a typical active tectonic belt located in the northeast Tibetan Plateau. This belt is at a high risk of strong earthquakes with magnitudes larger than 6, as shown by multiple recorded events during 1962–2009. The lack of detailed late Quaternary surficial faulting data and systematic seismotectonic studies has posed difficulties in properly assessing the seismic risks and understanding the ongoing geodynamics in this region. In this study, we mapped the geomorphic features and fault traces from high-resolution satellite images and field investigations of the Tuosuhu-Maoniushan fault (TMF). Field photogrammetry was conducted to obtain deformation measurements using a DJI M300 real-time kinematic (RTK) drone. The TMF displaces the Holocene and late Pleistocene alluvial terraces in the eastern Qaidam basin. This fault dips to the south in the west and central segments (as a boundary of the Denan depression) and to the north in the eastern segment along the piedmont of the Maoniushan Mountains. The vertical slip rate is estimated to be 0.37 ± 0.08 mm/yr, which is similar to that of the active southern Zongwulongshan fault. By integrating our investigations with the previously published studies on deep structures and Cenozoic geology of the region, we propose a deep-seated thrust model for the seismotectonics of the northern margin of the Qaidam basin. The Aimunike, Tuosuhu-Maoniushan, southern Zongwulongshan, and Zongwulong faults, along with many folds, form an active compressional zone. The complex across-strike structures and along-strike segmentation could facilitate the release of strain through earthquakes of magnitude 6–7 in this broad seismotectonics belt, rather than through strong surface-rupturing events resulting from a single mature large fault.


2022 ◽  
pp. 146808742110722
Author(s):  
Jie Shi ◽  
Yuanqing Zhu ◽  
Hui Peng ◽  
Haoyu Yan ◽  
Tinghui Li ◽  
...  

With the increasing awareness of global marine environmental protection, the emission of ship exhaust pollutants is strictly restricted. Selective catalytic reduction (SCR) technology is the mainstream technology to reduce ship NOx emission and make it meet IMO tier III regulations. A SCR reaction kinetic model based on Modelica language was established by Dymola software to predict the denitration efficiency, ammonia slip rate, and other parameters of SCR system. According to the functional structure of marine SCR system, the SCR system model is divided into urea injection module, mixer module, and SCR reactor module. The model was verified by SCR system bench test of WD10 diesel engine, which proved that the model can preferably reflect the actual situation. Using the established model, the effects of temperature, flow rate, NH3/NOx Stoichiometric Ratio (NSR), and cell density on the denitration performance of SCR system were analyzed. The results showed that the exhaust gas temperature and NSR have a great influence on the denitration efficiency. The injection amount of urea solution in marine SCR system should be based on the exhaust gas temperature and exhaust flow rate.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Toshiaki Nishi ◽  
Takeshi Yamaguchi ◽  
Kazuo Hokkirigawa

AbstractHigh slip-resistant footwear outsoles can reduce the risk of slip and fall on wet and icy surfaces. Falls on wet and icy surfaces can cause serious life-threatening injuries, especially for older adults. Here we show that footwear outsoles using the rubbers filled with activated carbon or sodium chloride produce higher friction force and reduce the slip rate in walking. We have identified that small depressions were formed on outsole materials filled with activated carbon or sodium chloride during friction between the rubber and surface leading to some air ingress into the interface. While there are air bubbles between the rubber and surface, real contacts are surrounded by water with negative pressure (Laplace pressure). It is considered that the negative pressure promotes real contact formation, which causes high friction. We consider that the outsole materials filled with activated carbon or sodium chloride can reduce the risk of slip-and-fall accidents.


2022 ◽  
Author(s):  
Kirsty Bayliss ◽  
Mark Naylor ◽  
Farnaz Kamranzad ◽  
Ian Main

Abstract. Probabilistic earthquake forecasts estimate the likelihood of future earthquakes within a specified time-space-magnitude window and are important because they inform planning of hazard mitigation activities on different timescales. The spatial component of such forecasts, expressed as seismicity models, generally rely upon some combination of past event locations and underlying factors which might affect spatial intensity, such as strain rate, fault location and slip rate or past seismicity. For the first time, we extend previously reported spatial seismicity models, generated using the open source inlabru package, to time-independent earthquake forecasts using California as a case study. The inlabru approach allows the rapid evaluation of point process models which integrate different spatial datasets. We explore how well various candidate forecasts perform compared to observed activity over three contiguous five year time periods using the same training window for the seismicity data. In each case we compare models constructed from both full and declustered earthquake catalogues. In doing this, we compare the use of synthetic catalogue forecasts to the more widely-used grid-based approach of previous forecast testing experiments. The simulated-catalogue approach uses the full model posteriors to create Bayesian earthquake forecasts. We show that simulated-catalogue based forecasts perform better than the grid-based equivalents due to (a) their ability to capture more uncertainty in the model components and (b) the associated relaxation of the Poisson assumption in testing. We demonstrate that the inlabru models perform well overall over various time periods, and hence that independent data such as fault slip rates can improve forecasting power on the time scales examined. Together, these findings represent a significant improvement in earthquake forecasting is possible, though this has yet to be tested and proven in true prospective mode.


2022 ◽  
Author(s):  
Muhammad Taufiq Rafie ◽  
David P. Sahara ◽  
Phil R. Cummins ◽  
Wahyu Triyoso ◽  
Sri Widiyantoro

Abstract The seismically active Sumatra subduction zone has generated some of the largest earthquakes in the instrumental record, and both historical accounts and paleogeodetic coral studies indicate such activity has historical recorded megathrust earthquakes and transferred stress to the surrounding, including the Great Sumatran Fault (GSF). Therefore, evaluating the stress transfer from these large subduction earthquakes could delineate the highly stressed area as potential-earthquake region along the GSF. In this study, we investigated eight megathrust earthquakes from 1797 to 2010 and resolved the accumulated Coulomb stress changes onto the 18 segments along the GSF. Additionally, we also estimated the rate of tectonic stress on the GSF segments which experienced large earthquake using the case of: (1) no sliver movement and (2) with sliver movement. Based on the historical stress changes of large earthquakes and the increase in tectonic stress rate, we analysed the historical stress changes time evolution on the GSF. The Coulomb stress accumulation of megathrust earthquakes between 1797-1907 increase the stress changes mainly on the southern part of GSF which followed by four major events between 1890-1943. The estimation of tectonic stress rates using case (1) produces low rate and long recurrence intervals which implies that the megathrust earthquakes plays an important role in allowing the GSF earthquake to occur. When implementing the arc-parallel sliver movement of case (2) to the calculation, the tectonic stress rates is 9 to 58 times higher than case (1) of no sliver movement. The observed slip rate of 15-16 mm/yr at the GSF is consistent with the recurrence interval for full-segment rupture of 100-200 years obtained from case (2). This suggests that the GSF earthquake is more controlled by the rapid arc-parallel forearc sliver motion. Furthermore, the analysis of stress changes time evolution model shows that some segments such as Tripa (North and South), Angkola, Musi and Manna appear to be brought back in their seismic cycles since these segments have experienced full-segment rupture and likely locked, increasing their earthquake hazard potentials.


Terra Nova ◽  
2021 ◽  
Author(s):  
Santantonio Massimo ◽  
Cipriani Angelo ◽  
Fabbi Simone ◽  
Meister Christian

2021 ◽  
Author(s):  
Huihui Weng

Abstract Slow slip events usually occur downdip of seismogenic zones in subduction megathrusts and crustal faults, with rupture speeds much slower than earthquakes. The empirical moment-duration scaling relation can help constrain the physical mechanism of slow slip events, yet it is still debated whether this scaling is linear or cubic and a fundamental model unifying slow slip events and earthquakes is still lacking. Here I present numerical simulations that show that slow slip events are regular earthquakes with negligible dynamic-wave effects. A continuum of rupture speeds, from arbitrarily-slow speeds up to the S-wave speed, is primarily controlled by the stress drop and a transition slip rate above which the fault friction transitions from rate-weakening behaviour to rate-strengthening behaviour. This continuum includes tsunami earthquakes, whose rupture speeds are about one-third of the S-wave speed. These numerical simulation results are predicted by the three-dimensional theory of dynamic fracture mechanics of elongated ruptures. This fundamental model unifies slow slip events and earthquakes, reconciles the observed moment-duration scaling relations, and opens new avenues for understanding earthquakes through investigations of the kinematics and dynamics of frequently occurring slow slip events.


Sign in / Sign up

Export Citation Format

Share Document