Lymphocyte Survival: A Red Queen Hypothesis

Science ◽  
1997 ◽  
Vol 277 (5334) ◽  
pp. 1950-1950 ◽  
Author(s):  
Antonio A. Freitas ◽  
Benedita Rocha
2015 ◽  
Vol 282 (1808) ◽  
pp. 20150186 ◽  
Author(s):  
Kjetil L. Voje ◽  
Øistein H. Holen ◽  
Lee Hsiang Liow ◽  
Nils Chr. Stenseth

A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution.


2017 ◽  
Vol 122 (4) ◽  
pp. 681-696 ◽  
Author(s):  
Matthias Hartmann ◽  
Michal Štefánek ◽  
Pavel Zdvořák ◽  
Petr Heřman ◽  
Jindřich Chrtek ◽  
...  

2009 ◽  
Vol 174 (S1) ◽  
pp. S31-S42 ◽  
Author(s):  
Marcel Salathé ◽  
Roger D. Kouyos ◽  
Sebastian Bonhoeffer

Sign in / Sign up

Export Citation Format

Share Document