High-frequency motility of outer hair cells and the cochlear amplifier

Science ◽  
1995 ◽  
Vol 267 (5206) ◽  
pp. 2006-2009 ◽  
Author(s):  
P Dallos ◽  
B. Evans
Author(s):  
Hui Wang ◽  
Hanbo Zhao ◽  
Yujia Chu ◽  
Jiang Feng ◽  
Keping Sun

Abstract High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to non-echolocating mammals. In addition, several nominally significant positively selected sites were detected in the non-functional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals.


2003 ◽  
Vol 84 (2) ◽  
pp. 739-749 ◽  
Author(s):  
Mark Ospeck ◽  
Xiao-xia Dong ◽  
Kuni H. Iwasa

Author(s):  
SHUPING JIA ◽  
JIAN ZUO ◽  
PETER DALLOS ◽  
DAVID Z. Z. HE

2014 ◽  
Vol 620 ◽  
pp. 248-252
Author(s):  
Qi Jiu Li ◽  
Xian De Zhang ◽  
Ting Ting Xu ◽  
Jiang Xia Yin

Outer hair cells (OHCs) have a unique ability to contract and elongate in response to changes in intracellular potential, and Prestin is the motor protein of the cochlea of the OHCs. It is the first time to invest the Prestin expression in different bat species. To invest Prestin expression in different bat species, which have different frequency, we did the coronal sections’ staining of the cochlea using immunhistochemistry. Experiment was designed to determine if the high-frequency bats’ OHCs have more expression than the low-frequency bats’OHCs. We found that the expression in three species was similar and had no obvious difference. Though the study of bats Prestin evolution suggested that Prestin has accelerating evolution in echolocation bats with high frequency, our we showed that the Prestin expression has nothing to do with the frequency, and the Prestin expression in high-frequency bats and low-frequency bats is similar.


2014 ◽  
Vol 111 (11) ◽  
pp. 2177-2186 ◽  
Author(s):  
M. Christian Brown

Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the “cochlear amplifier,” which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those responsive to contralateral sound. MOC neurons were sharply tuned to sound frequency with a well-defined characteristic frequency (CF). However, their labeled termination spans in the organ of Corti ranged from narrow to broad, innervating between 14 and 69 outer hair cells per axon in a “patchy” pattern. For units responsive to ipsilateral sound, the midpoint of innervation was mapped according to CF in a relationship generally similar to, but with more variability than, that of auditory-nerve fibers. Thus, based on CF mappings, most of the MOC terminations miss outer hair cells involved in the cochlear amplifier for their CF, which are located more basally. Compared with ipsilaterally responsive neurons, contralaterally responsive neurons had an apical offset in termination and a larger span of innervation (an average of 10.41% cochlear distance), suggesting that when contralateral sound activates the MOC reflex, the actions are different than those for ipsilateral sound.


Sign in / Sign up

Export Citation Format

Share Document