Crystal structure of the DNA binding domain of the heat shock transcription factor

Science ◽  
1994 ◽  
Vol 263 (5144) ◽  
pp. 224-227 ◽  
Author(s):  
C. Harrison ◽  
A. Bohm ◽  
H. Nelson
1994 ◽  
Vol 1 (9) ◽  
pp. 605-614 ◽  
Author(s):  
Geerten W. Vuister ◽  
Soon-Jong Kim ◽  
András Orosz ◽  
John Marquardt ◽  
Carl Wu ◽  
...  

2000 ◽  
Vol 11 (5) ◽  
pp. 1753-1764 ◽  
Author(s):  
Sengyong Lee ◽  
Tage Carlson ◽  
Noah Christian ◽  
Kristi Lea ◽  
Jennifer Kedzie ◽  
...  

In vitro DNA-binding assays demonstrate that the heat shock transcription factor (HSF) from the yeast Saccharomyces cerevisiae can adopt an altered conformation when stressed. This conformation, reflected in a change in electrophoretic mobility, requires that two HSF trimers be bound to DNA. Single trimers do not show this change, which appears to represent an alteration in the cooperative interactions between trimers. HSF isolated from stressed cells displays a higher propensity to adopt this altered conformation. Purified HSF can be stimulated in vitro to undergo the conformational change by elevating the temperature or by exposing HSF to superoxide anion. Mutational analysis maps a region critical for this conformational change to the flexible loop between the minimal DNA-binding domain and the flexible linker that joins the DNA-binding domain to the trimerization domain. The significance of these findings is discussed in the context of the induction of the heat shock response by ischemic stroke, hypoxia, and recovery from anoxia, all known to stimulate the production of superoxide.


2009 ◽  
Vol 424 (2) ◽  
pp. 253-261 ◽  
Author(s):  
Yukiko Takemori ◽  
Yasuaki Enoki ◽  
Noritaka Yamamoto ◽  
Yo Fukai ◽  
Kaori Adachi ◽  
...  

HSF (heat-shock transcription factor) trimers bind to the HSE (heat-shock element) regulatory sequence of target genes and regulate gene expression. A typical HSE consists of at least three contiguous inverted repeats of the 5-bp sequence nGAAn. Yeast HSF is able to recognize discontinuous HSEs that contain gaps in the array of the nGAAn sequence; however, hHSF1 (human HSF1) fails to recognize such sites in vitro, in yeast and in HeLa cells. In the present study, we isolated suppressors of the temperature-sensitive growth defect of hHSF1-expressing yeast cells. Intragenic suppressors contained amino acid substitutions in the DNA-binding domain of hHSF1 that enabled hHSF1 to regulate the transcription of genes containing discontinuous HSEs. The substitutions facilitated hHSF1 oligomerization, suggesting that the DNA-binding domain is important for this conformational change. Furthermore, other oligomerization-prone derivatives of hHSF1 were capable of recognizing discontinuous HSEs. These results suggest that modulation of oligomerization is important for the HSE specificity of hHSF1 and imply that hHSF1 possesses the ability to bind to and regulate gene expression via various types of HSEs in diverse cellular processes.


2016 ◽  
Vol 113 (43) ◽  
pp. E6572-E6581 ◽  
Author(s):  
Ce Feng Liu ◽  
Gabriel S. Brandt ◽  
Quyen Q. Hoang ◽  
Natalia Naumova ◽  
Vanja Lazarevic ◽  
...  

The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.


Sign in / Sign up

Export Citation Format

Share Document