scholarly journals Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy

1994 ◽  
Vol 3 (10) ◽  
pp. 1806-1821 ◽  
Author(s):  
Fred F. Damberger ◽  
Jeffrey G. Pelton ◽  
Celia J. Harrison ◽  
Hillary C.M. Nelson ◽  
David E. Wemmer
1994 ◽  
Vol 1 (9) ◽  
pp. 605-614 ◽  
Author(s):  
Geerten W. Vuister ◽  
Soon-Jong Kim ◽  
András Orosz ◽  
John Marquardt ◽  
Carl Wu ◽  
...  

2000 ◽  
Vol 11 (5) ◽  
pp. 1753-1764 ◽  
Author(s):  
Sengyong Lee ◽  
Tage Carlson ◽  
Noah Christian ◽  
Kristi Lea ◽  
Jennifer Kedzie ◽  
...  

In vitro DNA-binding assays demonstrate that the heat shock transcription factor (HSF) from the yeast Saccharomyces cerevisiae can adopt an altered conformation when stressed. This conformation, reflected in a change in electrophoretic mobility, requires that two HSF trimers be bound to DNA. Single trimers do not show this change, which appears to represent an alteration in the cooperative interactions between trimers. HSF isolated from stressed cells displays a higher propensity to adopt this altered conformation. Purified HSF can be stimulated in vitro to undergo the conformational change by elevating the temperature or by exposing HSF to superoxide anion. Mutational analysis maps a region critical for this conformational change to the flexible loop between the minimal DNA-binding domain and the flexible linker that joins the DNA-binding domain to the trimerization domain. The significance of these findings is discussed in the context of the induction of the heat shock response by ischemic stroke, hypoxia, and recovery from anoxia, all known to stimulate the production of superoxide.


2009 ◽  
Vol 424 (2) ◽  
pp. 253-261 ◽  
Author(s):  
Yukiko Takemori ◽  
Yasuaki Enoki ◽  
Noritaka Yamamoto ◽  
Yo Fukai ◽  
Kaori Adachi ◽  
...  

HSF (heat-shock transcription factor) trimers bind to the HSE (heat-shock element) regulatory sequence of target genes and regulate gene expression. A typical HSE consists of at least three contiguous inverted repeats of the 5-bp sequence nGAAn. Yeast HSF is able to recognize discontinuous HSEs that contain gaps in the array of the nGAAn sequence; however, hHSF1 (human HSF1) fails to recognize such sites in vitro, in yeast and in HeLa cells. In the present study, we isolated suppressors of the temperature-sensitive growth defect of hHSF1-expressing yeast cells. Intragenic suppressors contained amino acid substitutions in the DNA-binding domain of hHSF1 that enabled hHSF1 to regulate the transcription of genes containing discontinuous HSEs. The substitutions facilitated hHSF1 oligomerization, suggesting that the DNA-binding domain is important for this conformational change. Furthermore, other oligomerization-prone derivatives of hHSF1 were capable of recognizing discontinuous HSEs. These results suggest that modulation of oligomerization is important for the HSE specificity of hHSF1 and imply that hHSF1 possesses the ability to bind to and regulate gene expression via various types of HSEs in diverse cellular processes.


Sign in / Sign up

Export Citation Format

Share Document