sequence recognition
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 80)

H-INDEX

53
(FIVE YEARS 3)

Author(s):  
Emi Tanaka ◽  
Takeaki Wajima ◽  
Kei-ichi Uchiya ◽  
Hidemasa Nakaminami

The presence of Haemophilus influenzae strains with low susceptibility to quinolones has been reported worldwide. However, the emergence and dissemination mechanisms remain unclear. In this study, a total of 14 quinolone-low-susceptible H. influenzae isolates were investigated phylogenetically and in vitro resistance transfer assay in order to elucidate the emergence and dissemination mechanisms. The phylogenetic analysis based on gyrA sequences showed that strains with the same sequence type determined by multilocus sequence typing were classified into different clusters, suggesting that H. influenzae quinolone resistance emerges not only by point mutation, but also by the horizontal transfer of mutated gyrA . Moreover, the in vitro resistance transfer assay confirmed the horizontal transfer of quinolone resistance and indicated an active role of extracellular DNA in the resistance transfer. Interestingly, the horizontal transfer of parC only occurred in those cells that harbored a GyrA with amino acid substitutions, suggesting a possible mechanism of quinolone resistance in clinical settings. Moreover, the uptake signal and uptake-signal-like sequences located downstream of the quinolone resistant-determining regions of gyrA and parC , respectively, contributed to the horizontal transfer of resistance in H. influenzae . Our study demonstrates that the quinolone resistance of H. influenzae could emerge due to the horizontal transfer of gyrA and parC via recognition of an uptake signal sequence or uptake-signal-like sequence. Since the presence of quinolone-low-susceptible H. influenzae with amino acid substitutions in GyrA have been increasing in recent years, it is necessary to focus our attention to the acquisition of further drug resistance in these isolates.


2021 ◽  
Vol 22 (23) ◽  
pp. 12884
Author(s):  
Svetlana Batasheva ◽  
Rawil Fakhrullin

Biomedical applications of DNA are diverse but are usually associated with specific recognition of target nucleotide sequences or proteins and with gene delivery for therapeutic or biotechnological purposes. However, other aspects of DNA functionalities, like its nontoxicity, biodegradability, polyelectrolyte nature, stability, thermo-responsivity and charge transfer ability that are rather independent of its sequence, have recently become highly appreciated in material science and biomedicine. Whereas the latest achievements in structural DNA nanotechnology associated with DNA sequence recognition and Watson–Crick base pairing between complementary nucleotides are regularly reviewed, the recent uses of DNA as a raw material in biomedicine have not been summarized. This review paper describes the main biomedical applications of DNA that do not involve any synthesis or extraction of oligo- or polynucleotides with specified sequences. These sequence-independent applications currently include some types of drug delivery systems, biocompatible coatings, fire retardant and antimicrobial coatings and biosensors. The reinforcement of DNA properties by DNA complexation with nanoparticles is also described as a field of further research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengfei Meng ◽  
Shuangcheng Jia ◽  
Qian Li

AbstractSequence recognition of natural scene images has always been an important research topic in the field of computer vision. CRNN has been proven to be a popular end-to-end character sequence recognition network. However, the problem of wide characters is not considered under the setting of CRNN. The CRNN is less effective in recognizing long dense small characters. Aiming at the shortcomings of CRNN, we proposed an improved CRNN network, named CRNN-RES, based on BiLSTM and multiple receptive fields. Specifically, on the one hand, the CRNN-RES uses a dual pooling core to enhance the CNN network’s ability to extract features. On the other hand, by improving the last RNN layer, the BiLSTM is changed to a shared parameter BiLSTM network using recursive residuals, which reduces the number of network parameters and improves the accuracy. In addition, we designed a structure that can flexibly configure the length of the input data sequence in the RNN layer, called the CRFC layer. Comparing the CRNN-RES network proposed in this paper with the original CRNN network, the extensive experiments show that when recognizing English characters and numbers, the parameters of CRNN-RES is 8197549, which decreased 133,752 parameters compare with CRNN. In the public dataset ICDAR 2003 (IC03), ICDAR 2013 (IC13), IIIT 5k-word (IIIT5k), and Street View Text (SVT), the CRNN-RES obtain the accuracy of 96.90%, 89.85%, 83.63%, and 82.96%, which higher than CRNN by 1.40%, 3.15%, 5.43%, and 2.16% respectively.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7053
Author(s):  
Vladimir Khatskelevich Khavinson ◽  
Irina Grigor’evna Popovich ◽  
Natalia Sergeevna Linkova ◽  
Ekaterina Sergeevna Mironova ◽  
Anastasiia Romanovna Ilina

Peptides are characterized by their wide range of biological activity: they regulate functions of the endocrine, nervous, and immune systems. The mechanism of such action of peptides involves their ability to regulate gene expression and protein synthesis in plants, microorganisms, insects, birds, rodents, primates, and humans. Short peptides, consisting of 2–7 amino acid residues, can penetrate into the nuclei and nucleoli of cells and interact with the nucleosome, the histone proteins, and both single- and double-stranded DNA. DNA–peptide interactions, including sequence recognition in gene promoters, are important for template-directed synthetic reactions, replication, transcription, and reparation. Peptides can regulate the status of DNA methylation, which is an epigenetic mechanism for the activation or repression of genes in both the normal condition, as well as in cases of pathology and senescence. In this context, one can assume that short peptides were evolutionarily among the first signaling molecules that regulated the reactions of template-directed syntheses. This situation enhances the prospects of developing effective and safe immunoregulatory, neuroprotective, antimicrobial, antiviral, and other drugs based on short peptides.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroko Tamiya-Ishitsuka ◽  
Masako Tsuruga ◽  
Naohiro Noda ◽  
Akiko Yokota

The toxin-antitoxin (TA) system, inherent to various prokaryotes, plays a critical role in survival and adaptation to diverse environmental stresses. The toxin MazF, belonging to the type II TA system, functions as a sequence-specific ribonuclease that recognizes 3 to 7 bases. In recent studies, crystallographic analysis of MazFs from several species have suggested the presence of amino acid sites important for MazF substrate RNA binding and for its catalytic activity. Herein, we characterized MazF obtained from Candidatus Desulforudis audaxviator (MazF-Da) and identified the amino acid residues necessary for its catalytic function. MazF-Da, expressed using a cell-free protein synthesis system, is a six-base-recognition-specific ribonuclease that preferentially cleaves UACAAA sequences and weakly cleaves UACGAA and UACUAA sequences. We found that MazF-Da exhibited the highest activity at around 60°C. Analysis using mutants with a single mutation at an amino acid residue site that is well conserved across various MazF toxins showed that G18, E20, R25, and P26 were important for the ribonuclease activity of MazF-Da. The recognition sequence of the N36A mutant differed from that of the wild type. This mutant cleaved UACAAG sequences in addition to UACAAA sequences, but did not cleave UACGAA or UACUAA sequences, suggesting that Asn36 affects the loosening and narrowing of MazF-Da cleavage sequence recognition. Our study posits UACAAA as the recognition sequence of MazF-Da and provides insight into the amino acid sites that are key to its unique enzymatic properties.


2021 ◽  
Author(s):  
Zhiyi Shen ◽  
Yongkai Yu ◽  
Yuqian Yang ◽  
Xiao Xiao ◽  
Tong Sun ◽  
...  

Abstract Purpose. - Pancreatic β-cell failure is a central hallmark of the pathogenesis of diabetes mellitus; however, the molecular basis underlying chronic inflammation-caused β-cell failure remains unclear. This study reported here specifically assessed the association between miR-25/miR-92b family and β-cell failure in diabetes.Methods. - IL-1β and two additional ER stress activators, palmitate and tunicamycin were applied to evaluate the expression level miR-25 by Taqman® RT-PCR. Glucose- and potassium-stimulated insulin secretion assays were performed to assess β-cell function. Dual luciferase activity, and western blotting assays were utilized for miR-25 target gene verification. CCK-8 and TUNEL staining were used to evaluate β-cell viability and apoptosis.Results. – miRNA ChIP identified the increased level of miR-25 in INS-1 cells by IL-1β treatment. Expression levels of miR-25 were significantly upregulated with the treatment of IL-1β, palmitate or tunicamycin in both INS-1 cells and human islets. Ectopic elevation of miR-25 recapitulated most featured β-cell defects caused by IL-1β, including inhibition of insulin biosynthesis and increased β-cell apoptosis. These detrimental effects of miR-25 relied on its seed sequence recognition and repressed expression of its target genes Neurod1 and Mcl1. The miR-25/NEUROD1 axis reduced insulin biosynthesis via transcriptional regulation of β-cell specific genes. The miR-25/MCL1 axis caused β-cell apoptosis in a caspase 3/PARP1-dependent manner. Comparable impairments were generated by miR-92b and miR-25, emphasizing the redundant biological roles of miRNA family members with the same seed sequence. Conclusion. - MiR-25/miR-92b family plays a major role in β-cell failure occurring under inflammation and diabetes states.


2021 ◽  
Author(s):  
Taro Nishinaka

A triplex DNA model bound to a helical filament of homologous recombination protein, such as Escherichia coli RecA, is presented. This model suggests that a function of the nucleoprotein filament could be at least partly attributed to the lowering of transition energy of duplex DNA structure having the E-type sugar puckers. Key events during homologous recombination such as sequence recognition, base pair switching and elongation/contraction of the helical pitch may correlate with the pseudo-rotation angle of sugar puckers along the N-, E-, S- and W-types. A conformational change of sugar puckers during the reaction is resolved into two motions by introducing a pair of parameters, μ1 and ν3, which defines a swing orientation of bases and a torsional angle of phosphate backbones, respectively.


2021 ◽  
Author(s):  
Shuangping Huang ◽  
Yu Luo ◽  
Zhenzhou Zhuang ◽  
Jin-Gang Yu ◽  
Mengchao He ◽  
...  

2021 ◽  
Author(s):  
Ian Miller ◽  
Max Totrov ◽  
Lioubov Korotchkina ◽  
Denis N Kazyulkin ◽  
Andrei V Gudkov ◽  
...  

Abstract Long interspersed nuclear element-1 (L1) is an autonomous non-LTR retrotransposon comprising ∼20% of the human genome. L1 self-propagation causes genomic instability and is strongly associated with aging, cancer and other diseases. The endonuclease domain of L1’s ORFp2 protein (L1-EN) initiates de novo L1 integration by nicking the consensus sequence 5′-TTTTT/AA-3′. In contrast, related nucleases including structurally conserved apurinic/apyrimidinic endonuclease 1 (APE1) are non-sequence specific. To investigate mechanisms underlying sequence recognition and catalysis by L1-EN, we solved crystal structures of L1-EN complexed with DNA substrates. This showed that conformational properties of the preferred sequence drive L1-EN’s sequence-specificity and catalysis. Unlike APE1, L1-EN does not bend the DNA helix, but rather causes ‘compression’ near the cleavage site. This provides multiple advantages for L1-EN’s role in retrotransposition including facilitating use of the nicked poly-T DNA strand as a primer for reverse transcription. We also observed two alternative conformations of the scissile bond phosphate, which allowed us to model distinct conformations for a nucleophilic attack and a transition state that are likely applicable to the entire family of nucleases. This work adds to our mechanistic understanding of L1-EN and related nucleases and should facilitate development of L1-EN inhibitors as potential anticancer and antiaging therapeutics.


Sign in / Sign up

Export Citation Format

Share Document