The 2018 rift eruption and summit collapse of Kīlauea Volcano

Science ◽  
2018 ◽  
Vol 363 (6425) ◽  
pp. 367-374 ◽  
Author(s):  
C. A. Neal ◽  
S. R. Brantley ◽  
L. Antolik ◽  
J. L. Babb ◽  
M. Burgess ◽  
...  

In 2018, Kīlauea Volcano experienced its largest lower East Rift Zone (LERZ) eruption and caldera collapse in at least 200 years. After collapse of the Pu‘u ‘Ō‘ō vent on 30 April, magma propagated downrift. Eruptive fissures opened in the LERZ on 3 May, eventually extending ~6.8 kilometers. A 4 May earthquake [moment magnitude (Mw) 6.9] produced ~5 meters of fault slip. Lava erupted at rates exceeding 100 cubic meters per second, eventually covering 35.5 square kilometers. The summit magma system partially drained, producing minor explosions and near-daily collapses releasing energy equivalent toMw4.7 to 5.4 earthquakes. Activity declined rapidly on 4 August. Summit collapse and lava flow volume estimates are roughly equivalent—about 0.8 cubic kilometers. Careful historical observation and monitoring of Kīlauea enabled successful forecasting of hazardous events.

1994 ◽  
Vol 84 (1) ◽  
pp. 133-141
Author(s):  
John J. Dvorak ◽  
Fred W. Klein ◽  
Donald A. Swanson

Abstract An M = 7.2 earthquake on 29 November 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward several meters: a catastrophic release of compression of the south flank caused by earlier injections of magma into the adjacent segment of a rift zone. The focal mechanisms of the mainshock, the largest foreshock, and the largest aftershock suggest seaward movement of the upper block. The rate of aftershocks decreased in a familiar hyperbolic decay, reaching the pre-1975 rate of seismicity by the mid-1980s. Repeated rift-zone intrusions and eruptions after 1975, which occurred within 25 km of the summit area, compressed the adjacent portion of the south flank, apparently masking continued seaward displacement of the south flank. This is evident along a trilateration line that continued to extend, suggesting seaward displacement, immediately after the M = 7.2 earthquake, but then was compressed during a series of intrusions and eruptions that began in September 1977. Farther to the east, trilateration measurements show that the portion of the south flank above the aftershock zone, but beyond the area of compression caused by the rift-zone intrusions and eruptions, continued to move seaward at a decreasing rate until the mid-1980s, mimicking the decay in aftershock rate. Along the same portion of the south flank, the pattern of vertical surface displacements can be explained by continued seaward movement of the south flank and development of two eruptive fissures along the east rift zone, each of which extended from a depth of ∼3 km to the surface. The aftershock rate and continued seaward movement of the south flank are reminiscent of crustal response to other large earthquakes, such as the 1966 M = 6 Parkfield earthquake and the 1983 M = 6.5 Coalinga earthquake.


2020 ◽  
Vol 47 (5) ◽  
Author(s):  
J. Wassermann ◽  
F. Bernauer ◽  
B. Shiro ◽  
I. Johanson ◽  
F. Guattari ◽  
...  

2019 ◽  
Vol 60 (11) ◽  
pp. 2051-2075
Author(s):  
Brett H Walker ◽  
Michael O Garcia ◽  
Tim R Orr

Abstract The high frequency of historical eruptions at Kīlauea Volcano presents an exceptional opportunity to address fundamental questions related to the transport, storage, and interaction of magmas within rift zones. The Nāpau Crater area on Kīlauea’s East Rift Zone (ERZ) experienced nine fissure eruptions within 50 years (1961–2011). Most of the magma intruded during these frequent eruptions remained stored within the rift zone, creating a potential magma mixing depot within the ERZ. The superbly monitored and sampled 2011 eruption (Puʻu ʻŌʻō episode 59) presents an extraordinary opportunity to evaluate magma mixing processes within the ERZ. Whole-rock, glass, and olivine compositions were determined, not only for lava from the 2011 eruption, but also for a new suite of Nāpau Crater area samples from the 1963, 1965, 1968, 1983, and 1997 eruptions, as well as the previously undocumented 1922 eruption. Whole-rock XRF data revealed two geochemically distinct magma batches for episode 59: one less evolved (∼6·6 wt % MgO, 0·46 wt % K2O) than the other (∼6·2 wt % MgO, 0·58 wt % K2O). Episode 59 lava is remarkably aphyric (∼0·1 vol. % phenocrysts), making use of mineralogy to identify parent magma affinities problematic. Linear compositional trends of whole-rock major and trace elements, and reversely zoned olivine crystals indicate episode 59 lavas underwent magma mixing. Least squares regression calculations and plots of major and trace element data, were used to evaluate whether the episode 59 samples are products of mixing summit-derived magma with residual magma from previous Nāpau Crater area eruptions. The regression results and trace element ratios are inconsistent with previously proposed mixing scenarios, but they do support mixing between summit-derived magma and residual magma from the 1983 and 1997 Nāpau Crater area eruptions. These magmas were stored in physically and chemically distinct pods at depths of 1·6–3·0 km prior to mixing with new magma intruded from the summit to produce the episode 59 lava. One pod contained a fractionated equivalent of 1983 lava, and the other a hybrid of compositions similar to 1983 and 1997 lavas. The petrology of episode 59 lava demonstrates that magmas from two previous eruptions (1983 and 1997) were available to mix with magma intruded from the summit region. This study clarifies the pre-eruptive history of the mixed episode 59 lava, and elucidates the evolution of the volcano's magmatic system in a region of frequent eruptions.


2020 ◽  
Vol 47 (15) ◽  
Author(s):  
Paul Segall ◽  
Kyle R. Anderson ◽  
Fabio Pulvirenti ◽  
Taiyi Wang ◽  
Ingrid Johanson

1983 ◽  
Vol 10 (7) ◽  
pp. 493-496 ◽  
Author(s):  
David Epp ◽  
Robert W. Decker ◽  
Arnold T. Okamura

Sign in / Sign up

Export Citation Format

Share Document