surface displacements
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 95)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
pp. 108128652110592
Author(s):  
Yuwei Liu ◽  
Xuesong Tang ◽  
Peiliang Duan ◽  
Tao Wang ◽  
Peidong Li

In this paper, an analytical solution is developed for the problem of an infinite 1D hexagonal piezoelectric quasi-crystal medium weakened by an elliptical crack and subjected to mixed loads on the crack surfaces. The mixed loads comprise the phonon pressure, phason pressure, electric displacement, and temperature increment, and the crack surfaces can be electrically permeable or impermeable. Based on a general solution, combined with the generalized potential theory, the steady-state 3D thermo-electro-elastic field variables in the quasi-crystal are obtained in terms of elliptic integral functions and elementary functions. Several important physical quantities on the cracked plane, such as the generalized crack surface displacements, normal stresses, and stress intensity factors, are derived in closed forms. An illustrative numerical calculation verifies the presented analytical solution and shows the distribution of the 3D thermo-electro-elastic field. It is indicated that the influence of the phason field on the result is pronounced, especially for the electric field variables, and the electric permeability of crack surfaces has a significant effect on the electric displacement intensity factor at the crack tip.


2021 ◽  
Vol 9 ◽  
Author(s):  
René Mania ◽  
Simone Cesca ◽  
Thomas R. Walter ◽  
Ivan Koulakov ◽  
Sergey L. Senyukov

Explosive eruptions at steep-sided volcanoes may develop with complex precursor activity occurring in a poorly-understood magma plumbing system so that timelines and possible interactions with the geologic surrounding are often unresolved. Here we investigate the episode prior to the energetic December 20, 2017 eruption at Bezymianny volcano, Kamchatka. We compare degassing activity inferred from time-lapse camera images, seismicity and real-time seismic amplitude (RSAM) data derived from a temporary station network, as well as high-resolution InSAR displacement maps. Results show that the first changes can be identified in low-frequency seismicity and degassing at least 90 days before the eruption, while the first volcano-tectonic (VT) seismicity occurred 50 days before the eruption. Coinciding with significant changes of the RSAM, surface displacements affect the volcanic flanks at least 9 days prior to the eruption. Inversion modeling of the pre-eruptive surface deformation as well as deflation-type, co-eruptive surface changes indicate the presence of a shallow and transient reservoir. We develop a conceptual model for Bezymianny volcano initiating with deep seismicity, followed by shallow events, rockfalls, steaming and an inflating reservoir. The eruption is then associated with subsidence, caused by deflation of the same reservoir. This sequence and conceivable causality of these observations are providing a valuable contribution to our understanding of the shallow magma plumbing system beneath Bezymianny and may have relevance for volcano monitoring and early warning strategies at similar volcanoes elsewhere.


2021 ◽  
Vol 16 (7) ◽  
pp. 994-1004
Author(s):  
Taro Kakinuma ◽  
Mitsuru Yanagihara ◽  
Tsunakiyo Iribe ◽  
Kuninori Nagai ◽  
Chisato Hara ◽  
...  

Tsunami generation due to a landslide has been simulated using various numerical models, and the resulting water surface displacements from the models, as well as the corresponding experimental data, are compared. The numerical models used in this study are a two-layer long-wave model, a two-level non-hydrostatic model, a three-dimensional model, a lattice-Boltzmann-type model, an SPH-type model, and an MPS-type model. Tsunamis generated by a fluid falling down a uniform slope are accurately reproduced by the models, especially when the wave height of the tsunami is not large. When using the two-layer long-wave model, in which the two layers of a falling fluid and seawater are assumed not to mix, the parameters including the seabed friction coefficient, adjusted in one case, are not appropriate for other mixing conditions. The two-level model with non-hydrostatic pressure exhibits wave disintegration owing to the effects of both nonlinearity and dispersion, although the second wave generated by the reflection of a wave traveling towards the shore is not simulated accurately. Tsunamis caused by a group of rigid cylinders falling down a uniform slope have also been simulated using two Lagrangian models, namely the SPH- and MPS-type models. Although the first peak at the water level is accurately reproduced by both models, the water level at the trough between the first and second crests is overestimated.


2021 ◽  
Vol 13 (18) ◽  
pp. 3782
Author(s):  
Jiancun Shi ◽  
Zefa Yang ◽  
Lixin Wu ◽  
Siyu Qiao

The previous multi-track InSAR (MTI) method can be used to retrieve mining-induced three-dimensional (3D) surface displacements with high spatial–temporal resolution by incorporating multi-track interferometric synthetic aperture radar (InSAR) observations with a prior model. However, due to the track-by-track strategy used in the previous MTI method, no redundant observations are provided to estimate 3D displacements, causing poor robustness and further degrading the accuracy of the 3D displacement estimation. This study presents an improved MTI method to significantly improve the robustness of the 3D mining displacements derived by the previous MTI method. In this new method, a fused-track strategy, instead of the previous track-by-track one, is proposed to process the multi-track InSAR measurements by introducing a logistic model. In doing so, redundant observations are generated and further incorporated into the prior model to solve 3D displacements. The improved MTI method was tested on the Datong coal mining area, China, with Sentinel-1 InSAR datasets from three tracks. The results show that the 3D mining displacements estimated by the improved MTI method had the same spatial–temporal resolution as those estimated by the previous MTI method and about 33.5% better accuracy. The more accurate 3D displacements retrieved from the improved MTI method can offer better data for scientifically understanding the mechanism of mining deformation and assessing mining-related geohazards.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5988
Author(s):  
Jiren Xie ◽  
Taro Uchimura ◽  
Chao Huang ◽  
Zain Maqsood ◽  
Jingli Tian

With the development of deformation measuring technology at slope surfaces, prediction methods for rainfall-induced landslides based on the surface movements and tilting of slopes in the pre-failure stage have been recognized as a promising technique for risk reduction of slope failure triggered by rainfall. However, the correlation and possible mechanism for these prediction methods were rarely discussed. In this study, the comparison between the prediction methods of slope failure based on the time history of surface displacements and tilting in the acceleration stage was carried out by conducting a series of laboratory tests and field tests under rainfall, in which the movements and tilting behaviors at the slope surface were measured. The results show that the predicted failure time of tested slopes obtained by different prediction methods is consistent, and the correlation between these landslide prediction methods were also detected. A proportional relationship between the velocity of surface displacements and tilting rate was observed, and a possible mechanism for the sliding behavior was discussed based on this linear relationship as well. In addition, an expression for the linear relationship between the rate of the surface tilting and displacement was also established in this study, and the results could have significance for the understanding of the sliding behavior in the failure process in rainfall-induced landslides.


2021 ◽  
pp. 1-21
Author(s):  
Nicolás Scivetti ◽  
Paulo Marcos ◽  
María Eugenia Prieto ◽  
Cecilia Pavón Pivetta ◽  
Leonardo Benedini ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
J. van Huissteden ◽  
K. Teshebaeva ◽  
Y. Cheung ◽  
R. Í. Magnússon ◽  
H. Noorbergen ◽  
...  

Ice-ridge Yedoma terrain is susceptible to vertical surface displacements by thaw and refreeze of ground ice, and geomorphological processes of mass wasting, erosion and sedimentation. Here we explore the relation between a 3 year data set of InSAR measurements of vertical surface displacements during the thaw season, and geomorphological features in an area in the Indigirka Lowlands, Northeast Siberia. The geomorphology is presented in a geomorphological map, based on interpretation of high resolution visible spectrum satellite imagery, field surveys and available data from paleo-environmental research. The main landforms comprise overlapping drained thaw lake basins and lakes, erosion remnants of Late Pleistocene Yedoma deposits, and a floodplain of a high-sinuosity anastomosing river with ancient river terrace remnants. The spatial distribution of drained thaw lake basins and Yedoma erosion remnants in the study area and its surroundings is influenced by neotectonic movements. The 3 years of InSAR measurement include 2 years of high snowfall and extreme river flooding (2017–2018) and 1 year of modest snowfall, early spring and warm summer (2019). The magnitude of surface displacements varies among the years, and show considerable spatial variation. Distinct spatial clusters of displacement trajectories can be discerned, which relate to geomorphological processes and ground ice conditions. Strong subsidence occurred in particular in 2019. In the wet year of 2017, marked heave occurred at Yedoma plateau surfaces, likely by ice accumulation at the top of the permafrost driven by excess precipitation. The spatial variability of surface displacements is high. This is explored by statistical analysis, and is attributed to the interaction of various processes. Next to ground ice volume change, also sedimentation (peat, colluvial deposition) and shrinkage or swelling of soils with changing water content may have contributed. Tussock tundra areas covered by the extreme 2017 and 2018 spring floods show high subsidence rates and an increase of midsummer thaw depths. We hypothesize that increased flood heights along Siberian lowland rivers potentially induce deeper thaw and subsidence on floodplain margins, and also lowers the drainage thresholds of thaw lakes. Both mechanisms tend to increase floodplain area. This may increase CH4 emission from floodplains, but also may enhance carbon storage in floodplain sedimentary environments.


Sign in / Sign up

Export Citation Format

Share Document