Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction

Science ◽  
2020 ◽  
Vol 368 (6493) ◽  
pp. 885-889 ◽  
Author(s):  
Jie Yang ◽  
Xiaolei Zhu ◽  
J. Pedro F. Nunes ◽  
Jimmy K. Yu ◽  
Robert M. Parrish ◽  
...  

Simultaneous observation of nuclear and electronic motion is crucial for a complete understanding of molecular dynamics in excited electronic states. It is challenging for a single experiment to independently follow both electronic and nuclear dynamics at the same time. Here we show that ultrafast electron diffraction can be used to simultaneously record both electronic and nuclear dynamics in isolated pyridine molecules, naturally disentangling the two components. Electronic state changes (S1→S0 internal conversion) were reflected by a strong transient signal in small-angle inelastic scattering, and nuclear structural changes (ring puckering) were monitored by large-angle elastic diffraction. Supported by ab initio nonadiabatic molecular dynamics and diffraction simulations, our experiment provides a clear view of the interplay between electronic and nuclear dynamics of the photoexcited pyridine molecule.

Author(s):  
N. Uyeda ◽  
E. J. Kirkland ◽  
B. M. Siegel

The direct observation of structural change by high resolution electron microscopy will be essential for the better understanding of the damage process and its mechanism. However, this approach still involves some difficulty in quantitative interpretation mostly being due to the quality of obtained images. Electron diffraction, using crystalline specimens, has been the method most frequently applied to obtain a comparison of radiation sensitivity of various materials on the quantitative base. If a series of single crystal patterns are obtained the fading rate of reflections during the damage process give good comparative measures. The electron diffraction patterns also render useful information concerning the structural changes in the crystal. In the present work, the radiation damage of potassium tetracyano-platinate was dealt with on the basis two dimensional observation of fading rates of diffraction spots. KCP is known as an ionic crystal which possesses “one dimensional” electronic properties and it would be of great interest to know if radiation damage proceeds in a strongly asymmetric manner.


Author(s):  
J.M.K. Wiezorek ◽  
H.L. Fraser

Conventional methods of convergent beam electron diffraction (CBED) use a fully converged probe focused on the specimen in the object plane resulting in the formation of a CBED pattern in the diffraction plane. Large angle CBED (LACBED) uses a converged but defocused probe resulting in the formation of ‘shadow images’ of the illuminated sample area in the diffraction plane. Hence, low-spatial resolution image information and high-angular resolution diffraction information are superimposed in LACBED patterns which enables the simultaneous observation of crystal defects and their effect on the diffraction pattern. In recent years LACBED has been used successfully for the investigation of a variety of crystal defects, such as stacking faults, interfaces and dislocations. In this paper the contrast from coherent precipitates and decorated dislocations in LACBED patterns has been investigated. Computer simulated LACBED contrast from decorated dislocations and coherent precipitates is compared with experimental observations.


Author(s):  
P.A. Midgley ◽  
R. Vincent ◽  
D. Cherns

The oxygenation of YBa2Cu3O7−x (YBCO) leads to an orthorhombic distortion of the unit cell to accommodate the extra oxygen atom. This makes the formation of twins energetically favourable with CuO4 planar unit chains running alternately along the a and b axes of the parent tetragonal structure. The geometry of this twinning is such that four possible twin variants may co-exist with the twin boundaries lying in the (110) or (110) planes of the deformed structure. The traces of these planes are not mutually perpendicular and thus the crystal is strained to allow for the mismatch. It is to the nature of this strain field that this work has been addressed.Sintered samples were prepared by crushing and dispersing the resultant powder onto a very fine Cu mesh grid. Single crystals were chemically thinned to perforation. No discernible artefacts were seen and similar results were obtained with either method.


Sign in / Sign up

Export Citation Format

Share Document