Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point

Science ◽  
2020 ◽  
Vol 370 (6520) ◽  
pp. 1095-1099 ◽  
Author(s):  
Peng Zhang ◽  
Jee-Hoon Jeong ◽  
Jin-Ho Yoon ◽  
Hyungjun Kim ◽  
S.-Y. Simon Wang ◽  
...  

Unprecedented heatwave-drought concurrences in the past two decades have been reported over inner East Asia. Tree-ring–based reconstructions of heatwaves and soil moisture for the past 260 years reveal an abrupt shift to hotter and drier climate over this region. Enhanced land-atmosphere coupling, associated with persistent soil moisture deficit, appears to intensify surface warming and anticyclonic circulation anomalies, fueling heatwaves that exacerbate soil drying. Our analysis demonstrates that the magnitude of the warm and dry anomalies compounding in the recent two decades is unprecedented over the quarter of a millennium, and this trend clearly exceeds the natural variability range. The “hockey stick”–like change warns that the warming and drying concurrence is potentially irreversible beyond a tipping point in the East Asian climate system.

2020 ◽  
Vol 6 (1) ◽  
pp. eaax0255 ◽  
Author(s):  
Xu Lian ◽  
Shilong Piao ◽  
Laurent Z. X. Li ◽  
Yue Li ◽  
Chris Huntingford ◽  
...  

Earlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982–2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation. This extra soil drying is projected to amplify the frequency and intensity of summer heatwaves. Most feedbacks operate locally, except for a notable teleconnection where extra moisture transpired over Europe is transported to central Siberia. Model results illustrate that this teleconnection offsets Siberian soil moisture losses from local spring greening. Our results highlight that climate change adaptation planning must account for the extra summer water and heatwave stress inherited from warming-induced earlier greening.


Crop Science ◽  
1987 ◽  
Vol 27 (6) ◽  
pp. 1177-1184 ◽  
Author(s):  
R. B. Flagler ◽  
R. P. Patterson ◽  
A. S. Heagle ◽  
W. W. Heck

Forests ◽  
2015 ◽  
Vol 6 (12) ◽  
pp. 3748-3762 ◽  
Author(s):  
Ming-Han Yu ◽  
Guo-Dong Ding ◽  
Guang-Lei Gao ◽  
Yuan-Yuan Zhao ◽  
Lei Yan ◽  
...  

2021 ◽  
Author(s):  
L. Pidgorodetska ◽  
Ya. Zyelyk ◽  
L. Kolos ◽  
O. Fedorov

2015 ◽  
Vol 54 (2) ◽  
pp. 126-131 ◽  
Author(s):  
Rogier P.O. Schulte ◽  
Iolanda Simo ◽  
Rachel E. Creamer ◽  
Nicholas M. Holden

Abstract The Hybrid Soil Moisture Deficit (HSMD) model has been used for a wide range of applications, including modelling of grassland productivity and utilisation, assessment of agricultural management opportunities such as slurry spreading, predicting nutrient emissions to the environment and risks of pathogen transfer to water. In the decade since its publication, various ad hoc modifications have been developed and the recent publication of the Irish Soil Information System has facilitated improved assessment of the spatial soil moisture dynamics. In this short note, we formally present a new version of the model (HSMD2.0), which includes two new soil drainage classes, as well as an optional module to account for the topographic wetness index at any location. In addition, we present a new Indicative Soil Drainage Map for Ireland, based on the Irish Soil Classification system, developed as part of the Irish Soil Information System.


Sign in / Sign up

Export Citation Format

Share Document