surface warming
Recently Published Documents


TOTAL DOCUMENTS

508
(FIVE YEARS 199)

H-INDEX

55
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Tiago Silva ◽  
Jakob Abermann ◽  
Brice Noël ◽  
Sonika Shahi ◽  
Willem Jan van de Berg ◽  
...  

Abstract. Climate change is particularly strong in Greenland primarily as a result of changes in advection of heat and moisture fluxes from lower latitudes. The atmospheric structures involved influence the surface mass balance and their pattern are largely explained by climate oscillations which describe the internal climate variability. Based on a clustering method, we combine the Greenland Blocking Index and the North Atlantic Oscillation index with the vertically integrated water vapor to analyze inter-seasonal and regional impacts of the North Atlantic influence on the surface energy components over the Greenland Ice Sheet. In comparison to the reference period (1959–1990), the atmosphere has become warmer and moister during recent decades (1991–2020) for contrasting atmospheric circulation patterns. Particularly in the northern regions, increases in tropospheric water vapor enhance incoming longwave radiation and thus contribute to surface warming. Surface warming is most evident in winter, although its magnitude and spatial extent depend on the prevailing atmospheric configuration. Relative to the reference period, increases in sensible heat flux in the summer ablation zone are found irrespective of the atmospheric circulation pattern. Especially in the northern ablation zone, these are explained by the stronger katabatic winds which are partly driven by the larger surface pressure gradients between the ice/snow-covered surface and adjacent seas, and by the larger temperature gradient between near-surface air and the air above. Increases in net shortwave radiation are mainly connected to high-pressure systems. Whereas in the southern part of Greenland the atmosphere has gotten optical thinner, thus allowing more incoming shortwave radiation to reach the surface, in the northern part the incoming shortwave radiation flux has changed little with respect to the reference period, but the surface albedo decreased due to the expansion of the bare ice area.


2022 ◽  
Author(s):  
Guus J. M. Velders ◽  
John S. Daniel ◽  
Stephen A. Montzka ◽  
Isaac Vimont ◽  
Matthew Rigby ◽  
...  

Abstract. The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past two decades, primarily as a result of the phaseout of ozone depleting substances under the Montreal Protocol and the use of HFCs as their replacements. Projections from 2015 showed large increases in HFC use and emissions in this century in the absence of regulations, contributing up to 0.5 °C to global surface warming by 2100. In 2019, the Kigali Amendment to the Montreal Protocol came into force with the goal of limiting the use of HFCs globally, and currently, regulations to limit the use of HFCs are in effect in several countries. Here, we analyze trends in HFC emissions inferred from observations of atmospheric abundances and compare them with previous projections. Total CO2-eq inferred HFC emissions continue to increase through 2019 (to about 0.8 GtCO2-eq yr−1) but are about 20 % lower than previously projected for 2017–2019, mainly because of lower global emissions of HFC-143a. This indicates that HFCs are used much less in industrial and commercial refrigeration (ICR) applications than previously projected. This is supported by data reported by the developed countries and lower reported consumption of HFC-143a in China. Because this time-period preceded the beginning of the Kigali controls, this reduction cannot be linked directly to the provisions of the Kigali Amendment. However, it could indicate that companies transitioned away from the HFC-143a with its high global warming potential (GWP) for ICR applications, in anticipation of national or global mandates. A new HFC scenario is developed based on current trends in HFC use and current policies in several countries. These current policies reduce projected emissions in 2050 from the previously calculated 4.0–5.3 GtCO2-eq yr−1 to 1.9–3.6 GtCO2-eq yr−1. The provisions of the Kigali Amendment are projected to reduce the emissions further to 0.9–1.0 GtCO2-eq yr−1 in 2050. Without current policies, HFCs would be projected to contribute 0.28–0.44 °C to the global surface warming in 2100, compared to 0.14–0.31 °C with current policies, but without the Kigali Amendment. In contrast, the Kigali Amendment controls are expected to limit surface warming from HFCs to about 0.04 °C in 2100.


2022 ◽  
Author(s):  
Hu Yang ◽  
Jian Lu ◽  
Qiang Wang ◽  
Xiaoxu Shi ◽  
Gerrit Lohmann

AbstractGrowing evidence indicates that the atmospheric and oceanic circulation experiences a systematic poleward shift in a warming climate. However, the complexity of the climate system, including the coupling between the ocean and the atmosphere, natural climate variability and land-sea distribution, tends to obfuscate the causal mechanism underlying the circulation shift. Here, using an idealised coupled aqua-planet model, we explore the mechanism of the shifting circulation, by isolating the contributing factors from the direct CO$$_2$$ 2 forcing, the indirect ocean surface warming, and the wind-stress feedback from the ocean dynamics. We find that, in contrast to the direct CO$$_2$$ 2 forcing, ocean surface warming, in particular an enhanced subtropical ocean warming, plays an important role in driving the circulation shift. This enhanced subtropical ocean warming emerges from the background Ekman convergence of surface anomalous heat in the absence of the ocean dynamical change. It expands the tropical warm water zone, causes a poleward shift of the mid-latitude temperature gradient, hence forces a corresponding shift in the atmospheric circulation and the associated wind pattern. The shift in wind, in turn drives a shift in the ocean circulation. Our simulations, despite being idealised, capture the main features of the observed climate changes, for example, the enhanced subtropical ocean warming, poleward shift of the patterns of near-surface wind, sea level pressure, storm tracks, precipitation and large-scale ocean circulation, implying that increase in greenhouse gas concentrations not only raises the temperature, but can also systematically shift the climate zones poleward.


2021 ◽  
Author(s):  
Seth Seidel ◽  
Da Yang

We present ninety-nine cloud-resolving simulations to study how temperatures of anvil clouds and radiative tropopause change with surface warming. Our simulation results show that the radiative tropopause warms at approximately the same rate as anvil clouds. This relationship persists across a variety of modeling choices, including surface temperature, greenhouse gas concentration, and the representation of radiative transfer. We further show that the shifting ozone profile associated with climate warming may give rise to a fixed tropopause temperature as well as a fixed anvil temperature. This result points to the importance of faithful treatment of ozone in simulating clouds and climate change; the robust anvil-tropopause relationship may also provide alternative ways to understand what controls anvil temperature.


2021 ◽  
Vol 15 (12) ◽  
pp. 5739-5764
Author(s):  
Maria Zeitz ◽  
Ronja Reese ◽  
Johanna Beckmann ◽  
Uta Krebs-Kanzow ◽  
Ricarda Winkelmann

Abstract. Surface melting of the Greenland Ice Sheet contributes a large amount to current and future sea level rise. Increased surface melt may lower the reflectivity of the ice sheet surface and thereby increase melt rates: the so-called melt–albedo feedback describes this self-sustaining increase in surface melting. In order to test the effect of the melt–albedo feedback in a prognostic ice sheet model, we implement dEBM-simple, a simplified version of the diurnal Energy Balance Model dEBM, in the Parallel Ice Sheet Model (PISM). The implementation includes a simple representation of the melt–albedo feedback and can thereby replace the positive-degree-day melt scheme. Using PISM-dEBM-simple, we find that this feedback increases ice loss through surface warming by 60 % until 2300 for the high-emission scenario RCP8.5 when compared to a scenario in which the albedo remains constant at its present-day values. With an increase of 90 % compared to a fixed-albedo scenario, the effect is more pronounced for lower surface warming under RCP2.6. Furthermore, assuming an immediate darkening of the ice surface over all summer months, we estimate an upper bound for this effect to be 70 % in the RCP8.5 scenario and a more than 4-fold increase under RCP2.6. With dEBM-simple implemented in PISM, we find that the melt–albedo feedback is an essential contributor to mass loss in dynamic simulations of the Greenland Ice Sheet under future warming.


Author(s):  
Kamal Tewari ◽  
Saroj Kanta Mishra ◽  
Popat Salunke ◽  
Anupam Dewan

Abstract Antarctica directly impacts the lives of more than half of the world’s population living in the coastal regions. Therefore it is highly desirable to project its climate for the future. But it is a region where the climate models have large inter-modal variability and hence it raises questions about the robustness of the projections available. Therefore, we have examined 87 global models from three modeling consortia (CMIP5, CMIP6, and NEX-GDDP), characterized their fidelity, selected a set of 10 models (MM10) performing satisfactorily, and used them to make the future projection of precipitation and temperature, and assessed the contribution of precipitation towards sea-levels. For the historical period, the multi-model mean (MMM) of CMIP5 performed slightly better than CMIP6 and was worse for NEX-GDDP, with negligible surface temperature bias of approximately 0.5°C and a 17.5% and 19% biases in the mean precipitation noted in both CMIP consortia. These biases considerably reduced in MM10, with 21st century projections showing surface warming of approximately 5.1 - 5.3°C and precipitation increase approximately 44 - 50% against ERA-5 under high-emission scenarios in both CMIP consortia. This projected precipitation increase is much less than that projected using MMM in previous studies with almost the same level of warming, implying approximately 40.0 mm/year contribution of precipitation towards sea-level mitigation against approximately 65.0 mm/year.


2021 ◽  
pp. 1-46

Abstract This study investigates the formation mechanism of ocean surface warming pattern in response to a doubling CO2 with a focus on the role of ocean heat uptake (or ocean surface heat flux change, ΔQnet). We demonstrate that the transient patterns of surface warming and rainfall change simulated by the dynamic ocean-atmosphere coupled model (DOM) can be reproduced by the equilibrium solutions of the slab ocean-atmosphere coupled model (SOM) simulations when forced with the DOM ΔQnet distribution. The SOM is then used as a diagnostic, inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQnet (ocean heat uptake)-induced cooling effect. As ΔQnet is largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2 warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQnet-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2 warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQnet, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global mean ΔQnet effect under transient climate change. Our study highlights the importance of air-sea interaction in the surface warming pattern formation and the key role of ocean heat uptake pattern.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ying Zhang ◽  
Yan Du

AbstractThe tropical Indian Ocean (TIO) basin-wide warming occurred in 2020, following an extreme positive Indian Ocean Dipole (IOD) event instead of an El Niño event, which is the first record since the 1960s. The extreme 2019 IOD induced the oceanic downwelling Rossby waves and thermocline warming in the southwest TIO, leading to sea surface warming via thermocline-SST feedback during late 2019 to early 2020. The southwest TIO warming triggered equatorially antisymmetric SST, precipitation, and surface wind patterns from spring to early summer. Subsequently, the cross-equatorial “C-shaped” wind anomaly, with northeasterly–northwesterly wind anomaly north–south of the equator, led to basin-wide warming through wind-evaporation-SST feedback in summer. This study reveals the important role of air–sea coupling processes associated with the independent and extreme IOD in the TIO basin-warming mode, which allows us to rethink the dynamic connections between the Indo-Pacific climate modes.


Sign in / Sign up

Export Citation Format

Share Document