scholarly journals In Vitro Cross-Resistance Profiles of Rilpivirine, Dapivirine, and MIV-150, Nonnucleoside Reverse Transcriptase Inhibitor Microbicides in Clinical Development for the Prevention of HIV-1 Infection

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Nicholas S. Giacobbi ◽  
Nicolas Sluis-Cremer

ABSTRACT Rilpivirine (RPV), dapivirine (DPV), and MIV-150 are in development as microbicides. It is not known whether they will block infection of circulating nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant human immunodeficiency virus type 1 (HIV-1) variants. Here, we demonstrate that the activity of DPV and MIV-150 is compromised by many resistant viruses containing single or double substitutions. High DPV genital tract concentrations from DPV ring use may block replication of resistant viruses. However, MIV-150 genital tract concentrations may be insufficient to inhibit many resistant viruses, including those harboring K103N or Y181C.

2006 ◽  
Vol 80 (9) ◽  
pp. 4440-4446 ◽  
Author(s):  
Mohammad M. Hossain ◽  
Michael A. Parniak

ABSTRACT The nonnucleoside reverse transcriptase inhibitor (NNRTI) UC781 is under development as a microbicide to prevent sexual transmission of the human immunodeficiency virus type 1 (HIV-1). However, NNRTI-resistant HIV-1 is increasingly prevalent in the infected population, and one of the concerns for NNRTI-based microbicides is that they will be ineffective against drug-resistant virus and may in fact selectively transmit NNRTI-resistant virus. We evaluated the microbicidal activity of UC781 against UC781-resistant (UCR), efavirenz-resistant (EFVR), and nevirapine-resistant (NVPR) strains in a variety of microbicide-relevant tests, including inactivation of cell-free virus, inhibition of cell-to-cell HIV-1 transmission, and the ability of UC781 pretreatment to protect cells from subsequent infection in the absence of exogenous drug. UC781 was 10- to 100-fold less effective against NNRTI-resistant HIV-1 compared to wild-type (wt) virus in each of these tests, with UC781 microbicidal activity against the various virus strains being wt ≥ NVPR > UCR ≥ EFVR. Breakthrough experiments using UC781-pretreated cells and mixtures of wt and NNRTI-resistant HIV-1 showed that UC781-pretreatment selected for NNRTI-resistant HIV-1. However, the efficacy of UC781 was dose dependent, and 25 μM UC781 provided essentially equivalent microbicidal activity against NNRTI-resistant and wt virus. The amount of UC781 in topical microbicide formulations under current development is approximately 100-fold greater than this concentration, so transmission of NNRTI-resistant virus may not be an issue at these microbicide formulation levels of UC781. Nonetheless, the reduced microbicidal activity of UC781 against NNRTI-resistant HIV-1 suggests that additional antiviral agents should be included in NNRTI-based microbicide formulations.


2009 ◽  
Vol 53 (5) ◽  
pp. 1739-1746 ◽  
Author(s):  
Xiao-Jian Zhou ◽  
Keith Pietropaolo ◽  
David Damphousse ◽  
Bruce Belanger ◽  
Jie Chen ◽  
...  

ABSTRACT IDX899 is a novel nonnucleoside reverse transcriptase inhibitor (NNRTI) with potent in vitro activity against wild-type and NNRTI-resistant strains of human immunodeficiency virus type 1 (HIV-1) and with a high genetic barrier to resistance. Single rising doses of 50 and 100 (given by use of a 50-mg capsule) and 200, 400, 800, and 1,200 mg (given by use of a 200-mg capsule) of IDX899 or matching placebo were administered sequentially to cohorts of healthy male subjects, followed by the administration of multiple doses of 800 mg once daily (QD) or 400 mg twice daily (BID) for 7 days. A single dose of 400 mg was also administered to a cohort of females. IDX899 was administered orally under fasted (50- to 400-mg doses) and then fed (≥200-mg doses) conditions. Exposure to IDX899 was dose proportional and comparable in males and females. With a different drug-to-excipient ratio, the 50-mg capsule led to a higher exposure but a shorter mean terminal half-life (t 1/2) of 6.2 to 6.8 h. The 200-mg capsule resulted in a more sustained exposure with a longer mean t 1/2 of 7.9 to 14.6 h. Food enhanced absorption by approximately twofold, while it delayed the time to the maximum concentration. The mean concentration at 24 h following the administration of a single 200-mg dose under fed conditions exceeded the in vitro protein binding-adjusted 90% inhibitory concentration by fourfold. The levels of plasma exposure were similar between the single dosing and the repeat dosing with 800 mg QD and was approximately twofold higher with 400 mg BID. Mean steady-state trough levels were 0.9 μg/ml (range, 0.2 to 2.5 μg/ml) and 2.1 μg/ml (range, 0.5 to 4.5 μg/ml) for the 800-mg QD and 400-mg BID regimens, respectively. The level of excretion of unchanged drug in urine was negligible. IDX899 was well tolerated; and no serious adverse events, dose-dependent adverse events, or laboratory abnormalities were detected. These favorable safety and pharmacokinetic results support further clinical studies with patients with HIV-1 infection by the use of a QD regimen.


2000 ◽  
Vol 44 (1) ◽  
pp. 123-130 ◽  
Author(s):  
G. M. Szczech ◽  
P. Furman ◽  
G. R. Painter ◽  
D. W. Barry ◽  
K. Borroto-Esoda ◽  
...  

ABSTRACT Emivirine (EMV), formerly known as MKC-442, is 6-benzyl-1-(ethoxymethyl)-5-isopropyl-uracil, a novel nonnucleoside reverse transcriptase inhibitor that displays potent and selective anti-human immunodeficiency virus type 1 (HIV-1) activity in vivo. EMV showed little or no toxicity towards human mitochondria or human bone marrow progenitor cells. Pharmacokinetics were linear for both rats and monkeys, and oral absorption was 68% in rats. Whole-body autoradiography showed widespread distribution in tissue 30 min after rats were given an oral dose of [14C]EMV at 10 mg/kg of body weight. In rats given an oral dose of 250 mg/kg, there were equal levels of EMV in the plasma and the brain. In vitro experiments using liver microsomes demonstrated that the metabolism of EMV by human microsomes is approximately a third of that encountered with rat and monkey microsomes. In 1-month, 3-month, and chronic toxicology experiments (6 months with rats and 1 year with cynomolgus monkeys), toxicity was limited to readily reversible effects on the kidney consisting of vacuolation of kidney tubular epithelial cells and mild increases in blood urea nitrogen. Liver weights increased at the higher doses in rats and monkeys and were attributed to the induction of drug-metabolizing enzymes. EMV tested negative for genotoxic activity, and except for decreased feed consumption at the high dose (160 mg/kg/day), with resultant decreases in maternal and fetal body weights, EMV produced no adverse effects in a complete range of reproductive toxicology experiments performed on rats and rabbits. These results support the clinical development of EMV as a treatment for HIV-1 infection in adult and pediatric patient populations.


2004 ◽  
Vol 48 (12) ◽  
pp. 4680-4686 ◽  
Author(s):  
Koen Andries ◽  
Hilde Azijn ◽  
Theo Thielemans ◽  
Donald Ludovici ◽  
Michael Kukla ◽  
...  

ABSTRACT Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are potent inhibitors of human immunodeficiency virus type 1 (HIV-1); however, currently marketed NNRTIs rapidly select resistant virus, and cross-resistance within the class is extensive. A parallel screening strategy was applied to test candidates from a series of diarylpyrimidines against wild-type and resistant HIV strains carrying clinically relevant mutations. Serum protein binding and metabolic stability were addressed early in the selection process. The emerging clinical candidate, TMC125, was highly active against wild-type HIV-1 (50% effective concentration [EC50] = 1.4 to 4.8 nM) and showed some activity against HIV-2 (EC50 = 3.5 μM). TMC125 also inhibited a series of HIV-1 group M subtypes and circulating recombinant forms and a group O virus. Incubation of TMC125 with human liver microsomal fractions suggested good metabolic stability (15% decrease in drug concentration and 7% decrease in antiviral activity after 120 min). Although TMC125 is highly protein bound, its antiviral effect was not reduced by the presence of 45 mg of human serum albumin/ml, 1 mg of α1-acid glycoprotein/ml, or 50% human serum. In an initial screen for activity against a panel of 25 viruses carrying single and double reverse transcriptase amino acid substitutions associated with NNRTI resistance, the EC50 of TMC125 was <5 nM for 19 viruses, including the double mutants K101E+K103N and K103N+Y181C. TMC125 also retained activity (EC50 < 100 nM) against 97% of 1,081 recent clinically derived recombinant viruses resistant to at least one of the currently marketed NNRTIs. TMC125 is a potent next generation NNRTI, with the potential for use in individuals infected with NNRTI-resistant virus.


2002 ◽  
Vol 76 (20) ◽  
pp. 10546-10552 ◽  
Author(s):  
Miguel E. Quiñones-Mateu ◽  
Mahlet Tadele ◽  
Mariona Parera ◽  
Antonio Mas ◽  
Jan Weber ◽  
...  

ABSTRACT Recent studies have shown that the accumulation of multiple mutations associated with nucleoside reverse transcriptase inhibitor (NRTI) resistance may be grouped as multi-NRTI resistance (MNR) complexes. In this study, we have examined the viral fitness of recombinant viruses carrying the reverse transcriptase (RT) of a human immunodeficiency virus type 1 (HIV-1) primary isolate harboring mutations comprising the MNR 69 insertion complex. Different RT mutants were prepared in the sequence context of either the wild-type RT sequence of the HIV-1BH10 isolate or the sequence found in a clinical HIV-1 isolate with the MNR 69 insertion mutation. As expected, in the presence of zidovudine, recombinant viruses harboring the MNR RT from the patient were more fit than wild-type viruses. However, in the absence of drug, the virus with the RT from the original clinical isolate (SS) was more fit than (i) the wild-type virus with an engineered serine insertion between residues 69 and 70 (T69SSS) and (ii) the recombinant virus with the MNR RT where the insertion was removed (2S0S). These results suggest that RT insertions, in the right sequence context (i.e., additional mutations contained in the MNR 69 insertion complex), enhance NRTI resistance and may improve viral fitness. Thus, comparing complex mutation patterns with viral fitness may help to elucidate the role of uncharacterized drug resistance mutations in antiretroviral treatment failure.


2007 ◽  
Vol 81 (15) ◽  
pp. 7852-7859 ◽  
Author(s):  
Jessica H. Brehm ◽  
Dianna Koontz ◽  
Jeffrey D. Meteer ◽  
Vinay Pathak ◽  
Nicolas Sluis-Cremer ◽  
...  

ABSTRACT Recent work indicates that mutations in the C-terminal domains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) increase 3′-azido-3′-dideoxythymidine (AZT) resistance. Because it is not known whether AZT selects for mutations outside of the polymerase domain of RT, we carried out in vitro experiments in which HIV-1LAI or AZT-resistant HIV-1LAI (M41L/L210W/T215Y) was passaged in MT-2 cells in increasing concentrations of AZT. The first resistance mutations to appear in HIV-1LAI were two polymerase domain thymidine analog mutations (TAMs), D67N and K70R, and two novel mutations, A371V in the connection domain and Q509L in the RNase H domain, that together conferred up to 90-fold AZT resistance. Thereafter, the T215I mutation appeared but was later replaced by T215F, resulting in a large increase in AZT resistance (∼16,000-fold). Mutations in the connection and RNase H domains were not selected starting with AZT-resistant virus (M41L/L210W/T215Y). The roles of A371V and Q509L in AZT resistance were confirmed by site-directed mutagenesis: A371V and Q509L together increased AZT resistance ∼10- to 50-fold in combination with TAMs (M41L/L210W/T215Y or D67N/K70R/T215F) but had a minimal effect without TAMs (1.7-fold). A371V and Q509L also increased cross-resistance with TAMs to lamivudine and abacavir, but not stavudine or didanosine. These results provide the first evidence that mutations in the connection and RNase H domains of RT can be selected in vitro by AZT and confer greater AZT resistance and cross-resistance to nucleoside RT inhibitors in combination with TAMs in the polymerase domain.


2005 ◽  
Vol 49 (11) ◽  
pp. 4465-4473 ◽  
Author(s):  
Richard J. Hazen ◽  
Robert J. Harvey ◽  
Marty H. St. Clair ◽  
Robert G. Ferris ◽  
George A. Freeman ◽  
...  

ABSTRACT GW678248, a novel nonnucleoside reverse transcriptase inhibitor, has been evaluated for anti-human immunodeficiency virus activity in a variety of in vitro assays against laboratory strains and clinical isolates. When GW678248 was tested in combination with approved drugs in the nucleoside and nucleotide reverse transcriptase inhibitor classes or the protease inhibitor class, the antiviral activities were either synergistic or additive. When GW678248 was tested in combination with approved drugs in the nonnucleoside reverse transcriptase inhibitor class, the antiviral activities were either additive or slightly antagonistic. Clinical isolates from antiretroviral drug-experienced patients were selected for evaluation of sensitivity to GW678248 in a recombinant virus assay. Efavirenz (EFV) and nevirapine (NVP) had ≥10-fold increases in their 50% inhibitory concentrations (IC50s) for 85% and 98% of the 55 selected isolates, respectively, whereas GW678248 had a ≥10-fold increase in the IC50 for only 17% of these isolates. Thus, 81 to 83% of the EFV- and/or NVP-resistant viruses from this data set were susceptible to GW678248. Virus populations resistant to GW678248 were selected by in vitro dose-escalating serial passage. Resistant progeny viruses recovered after eight passages had amino acid substitutions V106I, E138K, and P236L in the reverse transcriptase-coding region in one passage series and amino acid substitutions K102E, V106A, and P236L in a second passage series.


2010 ◽  
Vol 55 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hillel Haim ◽  
Alan Engelman

ABSTRACTPharmacokinetic and pharmacodynamic considerations significantly impact infectious disease treatment options. One aspect of pharmacodynamics is the postantibiotic effect, classically defined as delayed bacterial growth after antibiotic removal. The same principle can apply to antiviral drugs. For example, significant delays in human immunodeficiency virus type 1 (HIV-1) replication can be observed after nucleoside/nucleotide reverse transcriptase inhibitor (N/NtRTI) removal from culture medium, because these prodrugs must be anabolized into active, phosphorylated forms once internalized into cells. A relatively new class of anti-HIV-1 drugs is the integrase strand transfer inhibitors (INSTIs), and the INSTIs raltegravir (RAL) and elvitegravir (EVG) were tested here alongside positive N/NtRTI controls tenofovir disoproxil fumarate (TDF) and azidothymidine (AZT), as well as the nonnucleoside reverse transcriptase inhibitor negative control nevirapine (NVP), to assess potential postantiviral effects. Transformed and primary CD4-positive cells pretreated with INSTIs significantly resisted subsequent challenge by HIV-1, revealing the following hierarchy of persistent intracellular drug strength: TDF > EVG ∼ AZT > RAL > NVP. A modified time-of-addition assay was moreover developed to assess residual drug activity levels. Approximately 0.8% of RAL and 2% of initial EVG and TDF 1-h pulse drug levels persisted during the acute phase of HIV-1 infection. EVG furthermore displayed significant virucidal activity. Although there is no reason to suspect obligate intracellular modification, this study nevertheless defines significant intracellular persistence of prototype INSTIs. Ongoing second-generation formulations should therefore consider the potential for significant postantiviral effects among this drug class. Combined intracellular persistence and virucidal activities suggest potential pre-exposure prophylaxis applications for EVG.


Sign in / Sign up

Export Citation Format

Share Document