scholarly journals Increased Multinucleoside Drug Resistance and Decreased Replicative Capacity of a Human Immunodeficiency Virus Type 1 Variant with an 8-Amino-Acid Insert in the Reverse Transcriptase

2005 ◽  
Vol 79 (6) ◽  
pp. 3536-3543 ◽  
Author(s):  
Lia van der Hoek ◽  
Nicole Back ◽  
Maarten F. Jebbink ◽  
Anthony de Ronde ◽  
Margreet Bakker ◽  
...  

ABSTRACT Resistance to antiretroviral drugs is generally conferred by specific amino acid substitutions, rather than insertions or deletions, in reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1). The exception to these findings is the amino acid insertions found in the β3-β4 loop of the RT enzyme in response to treatment with nucleoside reverse transcriptase inhibitors. This insert consists most commonly of two amino acids, but we describe in detail the evolution of a variant with an 8-amino-acid (aa) insert in a patient treated with zidovudine (ZDV) and 2′-3′-dideoxycytidine (ddC). The 24-nucleotide insert is a partial duplication of local sequences but also contains a sequence segment of unknown origin. Extensive sequence analysis of longitudinal patient samples indicated that the HIV-1 population prior to the start of therapy contained not the wild-type amino acid 215T in RT but a mixture with 215D and 215C. Treatment with ZDV and subsequent ZDV-ddC combination therapy resulted in the evolution of an HIV-1 variant with a typical ZDV resistance genotype (41L, 44D, 67N, 69D, 210W, 215Y), which was slowly replaced by the insert-containing variant (41L, 44D, insert at position 69, 70R, 210W, 215Y). The latter variant demonstrated increased resistance to a wide range of drugs, indicating that the 8-aa insert augments nucleoside analogue resistance. The gain in drug resistance of the insert variant came at the expense of a reduction in replication capacity when assayed in the absence of drugs. We compared these data with the resistance and replication properties of 133 insert-containing sequences of different individuals present in the ViroLogic database and found that the size and actual sequence of the insert at position 69 influence the level of resistance to nucleoside analogues.

2001 ◽  
Vol 75 (13) ◽  
pp. 5772-5777 ◽  
Author(s):  
Jan Balzarini ◽  
Maria-José Camarasa ◽  
Maria-Jesus Pérez-Pérez ◽  
Ana San-Félix ◽  
Sonsoles Velázquez ◽  
...  

ABSTRACT The RNA genome of the lentivirus human immunodeficiency virus type 1 (HIV-1) is significantly richer in adenine nucleotides than the statistically equal distribution of the four different nucleotides that is expected. This compositional bias may be due to the guanine-to-adenine (G→A) nucleotide hypermutation of the HIV genome, which has been explained by dCTP pool imbalances during reverse transcription. The adenine nucleotide bias together with the poor fidelity of HIV-1 reverse transcriptase markedly enhances the genetic variation of HIV and may be responsible for the rapid emergence of drug-resistant HIV-1 strains. We have now attempted to counteract the normal mutational pattern of HIV-1 in response to anti-HIV-1 drugs by altering the endogenous deoxynucleoside triphosphate pool ratios with antimetabolites in virus-infected cell cultures. We showed that administration of these antimetabolic compounds resulted in an altered drug resistance pattern due to the reversal of the predominant mutational flow of HIV (G→A) to an adenine-to-guanine (A→G) nucleotide pattern in the intact HIV-1-infected lymphocyte cultures. Forcing the virus to change its inherent nucleotide bias may lead to better control of viral drug resistance development.


2000 ◽  
Vol 44 (5) ◽  
pp. 1328-1332 ◽  
Author(s):  
Stefano Rusconi ◽  
Simona La Seta Catamancio ◽  
Paola Citterio ◽  
Semir Kurtagic ◽  
Michela Violin ◽  
...  

ABSTRACT In our study we examined the anti-human immunodeficiency virus type 1 (anti-HIV-1) activity of a novel HIV-1 protease inhibitor, PNU-140690 (tipranavir), against patient-derived isolates resistant to multiple other protease inhibitors (PIs). The aim of our experiments was to investigate the genotypes and the in vitro phenotypes of drug resistance of PNU-140690. We carried out drug susceptibility tests with peripheral blood mononuclear cells and a fixed amount of infectious virus (1,000 50% tissue culture infective doses) to determine the 50% inhibitory concentration (IC50) and IC90, PCR assays for the detection of drug resistance mutations in RNA in plasma, and direct sequencing of PCR products. Phenotypic resistance to PIs was invariably related to genotypic mutations. The substitutions among the amino acid residues of the protease included L10I, K20R, L24I, M36I, N37D, G48V, I54V, L63P, I64V, A71V, V77I, V82A, I84V, and L90M. Isolates from all of the patients had developed a maximal degree of resistance to indinavir, ritonavir, and nelfinavir (IC50s, >0.1 μM). We also compared these mutations with the amino acid changes previously described in association with in vivo tipranavir administration. The mutations included the following: I15V, E35D, N37D, R41K, D60E, and A71T. Infections with IIIB, 14aPre, and N70 were inhibited by an average drug IC90 of 0.18 ± 0.02 μM in multiple experiments. The average mean ± standard error of mean IC90 for the entire group of multidrug-resistant isolates derived from the mean values for two culture wells with p24 antigen supernatant appeared to be 0.619 ± 0.055 μM (range, 0.31 to 0.86 μM). Tipranavir retained a sustained antiviral activity against PI-MDR clinical isolates and might be useful in combination regimens with other antiretroviral agents for patients who have already failed other PI-containing therapies.


2007 ◽  
Vol 81 (22) ◽  
pp. 12145-12155 ◽  
Author(s):  
Zandrea Ambrose ◽  
Sarah Palmer ◽  
Valerie F. Boltz ◽  
Mary Kearney ◽  
Kay Larsen ◽  
...  

ABSTRACT Antiretroviral therapy (ART) in human immunodeficiency virus type 1 (HIV-1)-infected patients does not clear the infection and can select for drug resistance over time. Not only is drug-resistant HIV-1 a concern for infected individuals on continual therapy, but it is an emerging problem in resource-limited settings where, in efforts to stem mother-to-child-transmission of HIV-1, transient nonnucleoside reverse transcriptase inhibitor (NNRTI) therapy given during labor can select for NNRTI resistance in both mother and child. Questions of HIV-1 persistence and drug resistance are highly amenable to exploration within animals models, where therapy manipulation is less constrained. We examined a pigtail macaque infection model responsive to anti-HIV-1 therapy to study the development of resistance. Pigtail macaques were infected with a pathogenic simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT-SHIV) to examine the impact of prior exposure to a NNRTI on subsequent ART comprised of a NNRTI and two nucleoside RT inhibitors. K103N resistance-conferring mutations in RT rapidly accumulated in 2/3 infected animals after NNRTI monotherapy and contributed to virologic failure during ART in 1/3 animals. By contrast, ART effectively suppressed RT-SHIV in 5/6 animals. These data indicate that suboptimal therapy facilitates HIV-1 drug resistance and suggest that this model can be used to investigate persisting viral reservoirs.


2001 ◽  
Vol 75 (20) ◽  
pp. 9644-9653 ◽  
Author(s):  
Solange Peters ◽  
Miguel Muñoz ◽  
Sabine Yerly ◽  
Victor Sanchez-Merino ◽  
Cecilio Lopez-Galindez ◽  
...  

ABSTRACT Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within thepol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6 gag -p6 pol region of HIV-1, placed immediately upstream ofpol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6Gag), or by changes in activation of the viral protease (p6Pol). Duplication of the proline-rich p6Gag PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naı̈ve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6Pol), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.


2006 ◽  
Vol 80 (14) ◽  
pp. 7169-7178 ◽  
Author(s):  
Robert A. Smith ◽  
Donovan J. Anderson ◽  
Bradley D. Preston

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) contains four structural motifs (A, B, C, and D) that are conserved in polymerases from diverse organisms. Motif B interacts with the incoming nucleotide, the template strand, and key active-site residues from other motifs, suggesting that motif B is an important determinant of substrate specificity. To examine the functional role of this region, we performed “random scanning mutagenesis” of 11 motif B residues and screened replication-competent mutants for altered substrate analog sensitivity in culture. Single amino acid replacements throughout the targeted region conferred resistance to lamivudine and/or hypersusceptibility to zidovudine (AZT). Substitutions at residue Q151 increased the sensitivity of HIV-1 to multiple nucleoside analogs, and a subset of these Q151 variants was also hypersusceptible to the pyrophosphate analog phosphonoformic acid (PFA). Other AZT-hypersusceptible mutants were resistant to PFA and are therefore phenotypically similar to PFA-resistant variants selected in vitro and in infected patients. Collectively, these data show that specific amino acid replacements in motif B confer broad-spectrum hypersusceptibility to substrate analog inhibitors. Our results suggest that motif B influences RT-deoxynucleoside triphosphate interactions at multiple steps in the catalytic cycle of polymerization.


2000 ◽  
Vol 74 (11) ◽  
pp. 5357-5362 ◽  
Author(s):  
Hironori Sato ◽  
Yasuhiro Tomita ◽  
Kayo Shibamura ◽  
Teiichiro Shiino ◽  
Tuyoshi Miyakuni ◽  
...  

ABSTRACT Changes in the drug susceptibility, gene lineage, and deduced amino acid sequences of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) subtype E following 3′-azido-3′-deoxythymidine (AZT) monotherapy or AZT–2′,3′-dideoxyinosine combination therapy were examined with sequential virus isolates from a single family. The changes were compared to those reported for HIV-1 subtype B, revealing striking similarities in selected phenotype and amino acids independent of differences in the RT backbone sequences that constantly distinguish the two subtypes. Particularly, identical amino acid substitutions were present simultaneously at four different positions (D67N, K70R, T215F, and K219Q) for high-level AZT resistance. These data suggest that HIV-1 subtypes E and B evolve convergently at the phenotypic and amino acid levels when the nucleoside analogue RT inhibitors act as selective forces.


2003 ◽  
Vol 77 (2) ◽  
pp. 1512-1523 ◽  
Author(s):  
Wei Huang ◽  
Andrea Gamarnik ◽  
Kay Limoli ◽  
Christos J. Petropoulos ◽  
Jeannette M. Whitcomb

ABSTRACT Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55 gag polyprotein. These defects were the result of inadequate p160 gagpol incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55 gag processing, and RT activity, presumably through increased incorporation of p160 gagpol into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.


2006 ◽  
Vol 80 (14) ◽  
pp. 7186-7198 ◽  
Author(s):  
Valentina Svicher ◽  
Tobias Sing ◽  
Maria Mercedes Santoro ◽  
Federica Forbici ◽  
Fátima Rodríguez-Barrios ◽  
...  

ABSTRACT We characterized 16 additional mutations in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) whose role in drug resistance is still unknown by analyzing 1,906 plasma-derived HIV-1 subtype B pol sequences from 551 drug-naïve patients and 1,355 nucleoside RT inhibitor (NRTI)-treated patients. Twelve mutations positively associated with NRTI treatment strongly correlated both in pairs and in clusters with known NRTI resistance mutations on divergent evolutionary pathways. In particular, T39A, K43E/Q, K122E, E203K, and H208Y clustered with the nucleoside analogue mutation 1 cluster (NAM1; M41L+L210W+T215Y). Their copresence in this cluster was associated with an increase in thymidine analogue resistance. Moreover, treatment failure in the presence of K43E, K122E, or H208Y was significantly associated with higher viremia and lower CD4 cell count. Differently, D218E clustered with the NAM2 pathway (D67N+K70R+K219Q+T215F), and its presence in this cluster determined an increase in zidovudine resistance. In contrast, three mutations (V35I, I50V, and R83K) negatively associated with NRTI treatment showed negative correlations with NRTI resistance mutations and were associated with increased susceptibility to specific NRTIs. In particular, I50V negatively correlated with the lamivudine-selected mutation M184V and was associated with a decrease in M184V/lamivudine resistance, whereas R83K negatively correlated with both NAM1 and NAM2 clusters and was associated with a decrease in thymidine analogue resistance. Finally, the association pattern of the F214L polymorphism revealed its propensity for the NAM2 pathway and its strong negative association with the NAM1 pathway. Our study provides evidence of novel RT mutational patterns that regulate positively and/or negatively NRTI resistance and strongly suggests that other mutations beyond those currently known to confer resistance should be considered for improved prediction of clinical response to antiretroviral drugs.


Sign in / Sign up

Export Citation Format

Share Document