scholarly journals Production of Glucaric Acid from a Synthetic Pathway in Recombinant Escherichia coli

2009 ◽  
Vol 75 (13) ◽  
pp. 4660-4660 ◽  
Author(s):  
Tae Seok Moon ◽  
Sang-Hwal Yoon ◽  
Amanda M. Lanza ◽  
Joseph D. Roy-Mayhew ◽  
Kristala L. Jones Prather
2008 ◽  
Vol 75 (3) ◽  
pp. 589-595 ◽  
Author(s):  
Tae Seok Moon ◽  
Sang-Hwal Yoon ◽  
Amanda M. Lanza ◽  
Joseph D. Roy-Mayhew ◽  
Kristala L. Jones Prather

ABSTRACT A synthetic pathway has been constructed for the production of glucuronic and glucaric acids from glucose in Escherichia coli. Coexpression of the genes encoding myo-inositol-1-phosphate synthase (Ino1) from Saccharomyces cerevisiae and myo-inositol oxygenase (MIOX) from mice led to production of glucuronic acid through the intermediate myo-inositol. Glucuronic acid concentrations up to 0.3 g/liter were measured in the culture broth. The activity of MIOX was rate limiting, resulting in the accumulation of both myo-inositol and glucuronic acid as final products, in approximately equal concentrations. Inclusion of a third enzyme, uronate dehydrogenase (Udh) from Pseudomonas syringae, facilitated the conversion of glucuronic acid to glucaric acid. The activity of this recombinant enzyme was more than 2 orders of magnitude higher than that of Ino1 and MIOX and increased overall flux through the pathway such that glucaric acid concentrations in excess of 1 g/liter were observed. This represents a novel microbial system for the biological production of glucaric acid, a “top value-added chemical” from biomass.


2017 ◽  
Vol 59 ◽  
pp. 167-171 ◽  
Author(s):  
Jia-Le Yu ◽  
Xiao-Xia Xia ◽  
Jian-Jiang Zhong ◽  
Zhi-Gang Qian

Sign in / Sign up

Export Citation Format

Share Document