scholarly journals Optimization of Multilocus Sequence Analysis for Identification of Species in the Genus Vibrio

2014 ◽  
Vol 80 (17) ◽  
pp. 5359-5365 ◽  
Author(s):  
Michael W. Gabriel ◽  
George Y. Matsui ◽  
Robert Friedman ◽  
Charles R. Lovell

ABSTRACTMultilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. TherecA,rpoA,gapA, 16S rRNA gene,gyrB, andftsZsequences from 56 species of the genusVibriowere used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employingrecAandrpoAin both possible gene orders were different. The addition of thegapAgene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification ofVibriospecies.

Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2141-2150 ◽  
Author(s):  
Sabri M. Naser ◽  
Fabiano L. Thompson ◽  
Bart Hoste ◽  
Dirk Gevers ◽  
Peter Dawyndt ◽  
...  

The aim of this study was to evaluate the use of RNA polymerase α subunit (rpoA) and phenylalanyl-tRNA synthase (pheS) gene sequences as species identification tools for enterococci. Ninety-six representative strains comprising all currently recognized Enterococcus species were examined. rpoA gene sequences generated a robust classification into species groups similar to the one based on 16S rRNA gene sequence analysis. On the other hand, the pheS gene is a fast-evolving clock even better suited for species delineation than the rpoA gene, but not for recognition of species groups within Enterococcus as determined by both rpoA and 16S rRNA genes. All enterococcal species were clearly differentiated on the basis of their rpoA and pheS sequences. Evaluation of intraspecies variation showed that both rpoA and pheS genes have a high degree of homogeneity among strains of the same species. Strains of the same enterococcal species have at least 99 % rpoA and 97 % pheS gene sequence similarity, whereas, different enterococcal species have at maximum 97 % rpoA and 86 % pheS gene sequence similarity. It was concluded that both genes can be used as reliable tools for identification of clinical and environmental species of Enterococcus and are efficient screening methods for the detection of novel species. The sequence data obtained in this study were compared to the available atpA and 16S rRNA gene sequences. The MLSA approach to Enterococcus taxonomy provides portable, highly reproducible data with lower costs for rapid identification of all enterococcal species.


2011 ◽  
Vol 61 (10) ◽  
pp. 2525-2531 ◽  
Author(s):  
David P. Labeda

The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 species with validly published names and this number increases every year. The value of multilocus sequence analysis applied to the systematics of Streptomyces species has been well demonstrated in several recently published papers. In this study the sequence fragments of four housekeeping genes, atpD, recA, rpoB and trpB, were determined for the type strains of 10 known phytopathogenic species of the genus Streptomyces, including Streptomyces scabiei, Streptomyces acidiscabies, Streptomyces europaeiscabiei, Streptomyces luridiscabiei, Streptomyces niveiscabiei, Streptomyces puniciscabiei, Streptomyces reticuliscabiei, Streptomyces stelliscabiei, Streptomyces turgidiscabies and Streptomyces ipomoeae, as well as six uncharacterized phytopathogenic Streptomyces isolates. The type strains of 52 other species, including 19 species observed to be phylogenetically closely related to these, based on 16S rRNA gene sequence analysis, were also included in the study. Phylogenetic analysis of single gene alignments and a concatenated four-gene alignment demonstrated that the phytopathogenic species are taxonomically distinct from each other in spite of high 16S rRNA gene sequence similarities and provided a tool for the identification of unknown putative phytopathogenic Streptomyces strains at the species level.


2016 ◽  
Vol 44 (1) ◽  
pp. 4
Author(s):  
Franciele Maboni Siqueira ◽  
Cassiane Elizabete Lopes ◽  
Gustavo Geraldo Snell ◽  
Marcos José Pereira Gomes

Background: Rapidly growing mycobacteria (RGM) are ubiquitous in the environment, can be isolated from soil and wa­ter, and demonstrate visible growth on culture media within seven days. Mycobacterium smegmatis is an acid-alcohol fast bacterium, which belong to RGM group. The diagnosis of M. smegmatis infections may be quite difficult by conventional methods; therefore, biochemistry associated to nucleic acid-based approaches provided fast and accurate identification. Although this specie may be associated to animals and humans infections, there is few cases description. Nontuberculous mycobacterial bovine mastitis is uncommon, and bovine mastitis by M. smegmatis has been reported but non-confirmed case once in the past. This paper reports M. smegmatis recovered from a cattle with relapsing pyogranulomatous mastitis.Case: Milk samples from an adult Holstein cow showing relapsing pyogranulomatous mastitis history and by pronounced glandular hardening were cultivated and analyzed accordingly to standard milk cultivation protocols. The animal had been subject to several intramammary and parenteral antibiotic therapies protocols without adequate response. After 48 h incubation, a slow and sparse growth of slightly pigmented, shiny and smooth colonies was observed on the blood agar plate. The bacterium isolated was named as strain 55/08. The morphological and biochemical profile were tested, and the ability of the isolate to grow at Lowenstein-Jensen slants was confirmed. The isolated have showed positive reaction to catalase, glucose, sucrose, mannitol and nitrate. The pigment formation was observed for 14 days incubation, and the colonies produce pigment after prolonged time. Gram and Ziehl-Neelsen staining revealed poorly pigmented, irregular, slender Gram-positive and acid fast rods. The staining and biochemical profile showed closed isolated relationship to M. smegmatis. A discriminatory identification based in the 16S rRNA gene sequence analysis was performed. The total DNA from the strain 55/08 was extracted and the partial 16S rRNA sequence was amplified, using prokaryotic universal primer pairs and the extract DNA as template, by PCR assay following the purification and sequencing of the amplicons. A total of 1,443 nucleotides form consensus sequence were alignment to M. smegmatis and other mycobacteria 16S rRNA avail­able sequences. The sequence analysis confirmed the M. smegmatis identification as etiological agent of bovine relapsing pyogranulomatous mastitis. M. smegmatis strain 55/08 partial 16S rRNA gene sequence was submitted to GenBank. The phylogenetic relationship of the strain 55/08 with other mycobacteria was performed in order to confirm the identification of the isolate as M. smegmatis. Discussion: Nontuberculous mycobacteria are uncommon causes of bovine mastitis. Some old reports have described M. smegmatis as etiological agent of mastitis, but without definitive diagnostic. M. smegmatis mammary quarter introduction may be related to the repeated intramammary treatment protocols, because this mycobacteria is related to environmental infections. The relapsing pyogranulomatous mastitis infection could be associated to other bacteria species. However, the phenotypic and molecular characterization which was performed demonstrated the accurate identification of the isolated as M. smegmatis. Milk contaminated by M. smegmatis may be a potential infection source for human and other animal species. This report reinforces the need to optimize quality programs and laboratorial diagnosis to further the accurate microorganism identification in milk samples.Keywords: RGM mycobacteria, relapsing mastitis, M. smegmatis, molecular identification.


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1526-1533 ◽  
Author(s):  
J. Killer ◽  
J. Havlík ◽  
E. Vlková ◽  
V. Rada ◽  
R. Pechar ◽  
...  

Three strains of regular, long, Gram-stain-positive bacterial rods were isolated using TPY, M.R.S. and Rogosa agar under anaerobic conditions from the digestive tract of wild mice (Mus musculus). All 16S rRNA gene sequences of these isolates were most similar to sequences of Lactobacillus gasseri ATCC 33323T and Lactobacillus johnsonii ATCC 33200T (97.3 % and 97.2 % sequence similarities, respectively). The novel strains shared 99.2–99.6 % 16S rRNA gene sequence similarities. Type strains of L. gasseri and L. johnsonii were also most related to the newly isolated strains according to rpoA (83.9–84.0 % similarities), pheS (84.6–87.8 %), atpA (86.2–87.7 %), hsp60 (89.4–90.4 %) and tuf (92.7–93.6 %) gene sequence similarities. Phylogenetic studies based on 16S rRNA, hsp60, rpoA, atpA and pheS gene sequences, other genotypic and many phenotypic characteristics (results of API 50 CHL, Rapid ID 32A and API ZYM biochemical tests; cellular fatty acid profiles; cellular polar lipid profiles; end products of glucose fermentation) showed that these bacterial strains represent a novel species within the genus Lactobacillus . The name Lactobacillus rodentium sp. nov. is proposed to accommodate this group of new isolates. The type strain is MYMRS/TLU1T ( = DSM 24759T = CCM 7945T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2910-2915 ◽  
Author(s):  
Marta Martini ◽  
Carmine Marcone ◽  
Jelena Mitrović ◽  
Michael Maixner ◽  
Duška Delić ◽  
...  

Plants of Convolvulus arvensis exhibiting symptoms of undersized leaves, shoot proliferation and yellowing, collectively defined as bindweed yellows, were sampled in different regions of Europe and assessed for phytoplasma infection by PCR amplification using phytoplasma universal rRNA operon primer pairs. Positive results were obtained for all diseased plants. RFLP analysis of amplicons comprising the16S rRNA gene alone or the16S rRNA gene and 16-23S intergenic spacer region indicated that the detected phytoplasmas were distinguishable from all other previously described rRNA gene sequences. Analysis of 16S rRNA gene sequences derived from seven selected phytoplasma strains (BY-S57/11, BY-S62/11, BY-I1015, BY-I1016, BY-BH1, BY-BH2 and BY-G) showed that they were nearly identical (99.9–100 % gene sequence similarity) but shared less than 97.5 % similarity with comparable sequences of other phytoplasmas. Thus, BY phytoplasmas represent a new taxon whose closest relatives are stolbur phytoplasma strains and ‘ Candidatus Phytoplasma fragariae ’ with which they share 97.2 % and 97.1 % 16S rRNA gene sequence similarity, respectively. Phylogenetic analysis of 16S rRNA gene sequences confirmed that bindweed yellows phytoplasma strains collectively represent a distinct lineage within the phytoplasma clade and share a common ancestor with previously published or proposed ‘Candidatus Phytoplasma’ taxa within a major branch including aster yellows and stolbur phytoplasmas. On the basis of unique 16S rRNA gene sequences and biological properties that include a single host plant species and a geographical distribution limited to parts of Europe, the bindweed yellows (BY) phytoplasmas represent a coherent but discrete taxon, ‘Candidatus Phytoplasma convolvuli’, with strain BY-S57/11 (GenBank accession no. JN833705) as the reference strain.


2007 ◽  
Vol 57 (8) ◽  
pp. 1846-1850 ◽  
Author(s):  
Li-Ting Wang ◽  
Fwu-Ling Lee ◽  
Chun-Ju Tai ◽  
Hiroaki Kasai

The Bacillus subtilis group comprises eight closely related species that are indistinguishable from one another by 16S rRNA gene sequence analysis. Therefore, the gyrB gene, which encodes the subunit B protein of DNA gyrase, was selected as an alternative phylogenetic marker. To determine whether gyrB gene sequence analysis could be used for phylogenetic analysis and species identification of members of the B. subtilis group, the congruence of gyrB grouping with both 16S rRNA gene sequencing and DNA–DNA hybridization data was evaluated. Ranges of gyrB nucleotide and translated amino acid sequence similarities among the eight type strains were 75.4–95.0 % and 88.5–99.2 %, respectively, whereas 16S rRNA gene sequence similarities were 98.1–99.8 %. Results showed that gyrB gene sequences provide higher resolution than 16S rRNA gene sequences. The classification achieved by gyrB sequence analysis was in agreement with results obtained with DNA–DNA hybridization. It is concluded that the gyrB gene may be an efficient alternative target for identification and taxonomic analysis of members of the B. subtilis group.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 920-926 ◽  
Author(s):  
Wolfgang Eder ◽  
Jörg Peplies ◽  
Gerhard Wanner ◽  
Anja Frühling ◽  
Susanne Verbarg

A Gram-negative, oxidase- and catalase-positive bacterium, designated strain EM 4T, which varied in shape from rod-shaped to curved or helical with frequently observed bulb-shaped protuberances, was isolated from purified water. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the family Chitinophagaceae within the phylum Bacteroidetes ; the closest relative among bacterial species with validly published names was determined to be Sediminibacterium salmoneum NBRC 103935T, with 93.4 % sequence identity. The main fatty acids of strain EM 4T were iso-C15 : 0, iso-C15 : 1 and iso-C17 : 0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, aminolipids, aminophospholipids and unknown lipids; the quinone system consisted of menaquinone MK-7. 16S rRNA gene sequence analysis and the polar lipid and fatty acid profiles suggest that the strain represents a novel genus and species, for which the name Hydrobacter penzbergensis gen. nov., sp. nov. is proposed. The type strain of Hydrobacter penzbergensis is strain EM 4T ( = DSM 25353T = CCUG 62278T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4093-4099 ◽  
Author(s):  
Peter Kämpfer ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A beige-pigmented, oxidase-negative bacterial strain (JM-458T), isolated from a rhizosphere sample, was studied using a polyphasic taxonomic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain JM-458T with sequences of the type strains of closely related species of the genus Enterobacter showed that it shared highest sequence similarity with Enterobacter mori (98.7 %), Enterobacter hormaechei (98.3 %), Enterobacter cloacae subsp. dissolvens, Enterobacter ludwigii and Enterobacter asburiae (all 98.2 %). 16S rRNA gene sequence similarities to all other Enterobacter species were below 98 %. Multilocus sequence analysis based on concatenated partial rpoB, gyrB, infB and atpD gene sequences showed a clear distinction of strain JM-458T from its closest related type strains. The fatty acid profile of the strain consisted of C16 : 0, C17 : 0 cyclo, iso-C15 : 0 2-OH/C16 : 1ω7c and C18 : 1ω7c as major components. DNA–DNA hybridizations between strain JM-458T and the type strains of E. mori, E. hormaechei and E. ludwigii resulted in relatedness values of 29 % (reciprocal 25 %), 24 % (reciprocal 43 %) and 16 % (reciprocal 17 %), respectively. DNA–DNA hybridization results together with multilocus sequence analysis results and differential biochemical and chemotaxonomic properties showed that strain JM-458T represents a novel species of the genus Enterobacter, for which the name Enterobacter muelleri sp. nov. is proposed. The type strain is JM-458T ( = DSM 29346T = CIP 110826T = LMG 28480T = CCM 8546T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3049-3054 ◽  
Author(s):  
Shuang Zhou ◽  
Yan Wang ◽  
Hongmei Xia ◽  
Dongbo Liu ◽  
Shan Chen ◽  
...  

A short rod-shaped, Gram-stain-negative strain that can degrade multiple polymers was isolated from forest soil in China and designated as DSWY01T. The results of 16S rRNA gene sequence analysis showed that this isolate shared high similarities with Pseudomonas alcaliphila NBRC 102411T (99.3 %), Pseudomonas mendocina NBRC 14162T (99.2%) and Pseudomonas oleovorans NBRC 13583T (99.0%). The results of phylogenetic analysis based on 16S rRNA gene sequence and multilocus sequence analysis (recA, gyrB, nuoD, glnS and rpoD) indicated that strain DSWY01T belongs to the genus Pseudomonas and is a member of the P. oleovorans group in an independent branch. The average nucleotide identity and digital DNA–DNA hybridization between the genome of strain DSWY01T and the genomes of other species (ANIb 77.72–89.65 %; GGDC 15.50–31.10 %) showed that the isolate represents a novel species. The DNA G+C content of strain DSWY01T was 63.67 mol%, and the major cellular fatty acids (>15 %) were a mixture of C18 : 1ω7c/C18 : 1ω6c and C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified lipids, and the major quinone was CQ-10. The morphological, physiological and biochemical characteristics of the isolate were then compared with those of reference type strains. The isolate differed considerably from its closest relatives and is representative of a novel species of Pseudomonas , for which the name Pseudomonas hydrolytica sp. nov. is proposed. The type strain is DSWY01T (=DSM 106702T=CCTCC AB 2018053T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


Sign in / Sign up

Export Citation Format

Share Document