Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes

Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2141-2150 ◽  
Author(s):  
Sabri M. Naser ◽  
Fabiano L. Thompson ◽  
Bart Hoste ◽  
Dirk Gevers ◽  
Peter Dawyndt ◽  
...  

The aim of this study was to evaluate the use of RNA polymerase α subunit (rpoA) and phenylalanyl-tRNA synthase (pheS) gene sequences as species identification tools for enterococci. Ninety-six representative strains comprising all currently recognized Enterococcus species were examined. rpoA gene sequences generated a robust classification into species groups similar to the one based on 16S rRNA gene sequence analysis. On the other hand, the pheS gene is a fast-evolving clock even better suited for species delineation than the rpoA gene, but not for recognition of species groups within Enterococcus as determined by both rpoA and 16S rRNA genes. All enterococcal species were clearly differentiated on the basis of their rpoA and pheS sequences. Evaluation of intraspecies variation showed that both rpoA and pheS genes have a high degree of homogeneity among strains of the same species. Strains of the same enterococcal species have at least 99 % rpoA and 97 % pheS gene sequence similarity, whereas, different enterococcal species have at maximum 97 % rpoA and 86 % pheS gene sequence similarity. It was concluded that both genes can be used as reliable tools for identification of clinical and environmental species of Enterococcus and are efficient screening methods for the detection of novel species. The sequence data obtained in this study were compared to the available atpA and 16S rRNA gene sequences. The MLSA approach to Enterococcus taxonomy provides portable, highly reproducible data with lower costs for rapid identification of all enterococcal species.

2011 ◽  
Vol 61 (4) ◽  
pp. 932-937 ◽  
Author(s):  
Carrie L. Brady ◽  
Teresa Goszczynska ◽  
Stephanus N. Venter ◽  
Ilse Cleenwerck ◽  
Paul De Vos ◽  
...  

Eight yellow-pigmented, Gram-negative, rod-shaped, oxidase-negative, motile, facultatively anaerobic bacteria were isolated from onion seed in South Africa and from an onion plant exhibiting centre rot symptoms in the USA. The isolates were assigned to the genus Pantoea on the basis of phenotypic and biochemical tests. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA), based on gyrB, rpoB, infB and atpD sequences, confirmed the allocation of the isolates to the genus Pantoea. MLSA further indicated that the isolates represented a novel species, which was phylogenetically most closely related to Pantoea ananatis and Pantoea stewartii. Amplified fragment length polymorphism analysis also placed the isolates into a cluster separate from P. ananatis and P. stewartii. Compared with type strains of species of the genus Pantoea that showed >97 % 16S rRNA gene sequence similarity with strain BD 390T, the isolates exhibited 11–55 % whole-genome DNA–DNA relatedness, which confirmed the classification of the isolates in a novel species. The most useful phenotypic characteristics for the differentiation of the isolates from their closest phylogenetic neighbours are production of acid from amygdalin and utilization of adonitol and sorbitol. A novel species, Pantoea allii sp. nov., is proposed, with type strain BD 390T ( = LMG 24248T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1535-1538 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain, DC-186T, isolated from home-made compost, was characterized for its phenotypic and phylogenetic properties. The isolate was a Gram-negative rod that was able to grow at 15–36 °C and pH 5.5–8.0. Strain DC-186T was positive in tests for catalase, oxidase and β-galactosidase activities and aesculin hydrolysis. The predominant fatty acids were the summed feature C16 : 1/iso-C15 : 0 2-OH (42 %) and iso-C15 : 0 (26 %), the major respiratory quinone was menaquinone-7 and the genomic DNA G+C content was 42 mol%. 16S rRNA gene sequence analysis and phenetic characterization indicated that this organism belongs to the phylum Bacteroidetes and revealed its affiliation to the family Sphingobacteriaceae. Of recognized taxa, strain DC-186T was most closely related to Sphingobacterium daejeonense (90 % sequence similarity) based on 16S rRNA gene sequence analysis. The low 16S rRNA gene sequence similarity with other recognized taxa and the identification of distinctive phenetic features for this isolate support the definition of a new genus within the family Sphingobacteriaceae. The name Pseudosphingobacterium domesticum gen. nov., sp. nov. is proposed, with strain DC-186T (=CCUG 54353T=LMG 23837T) as the type strain.


2006 ◽  
Vol 56 (11) ◽  
pp. 2523-2527 ◽  
Author(s):  
Sabri M. Naser ◽  
Marc Vancanneyt ◽  
Cindy Snauwaert ◽  
Gino Vrancken ◽  
Bart Hoste ◽  
...  

The taxonomic position of six Lactobacillus amylophilus strains isolated from swine waste-corn fermentations was reinvestigated. All strains were included in a multilocus sequence analysis (MLSA) study for species identification of Lactobacillus using the genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA). Partial pheS and rpoA gene sequences showed that strains LMG 11400 and NRRL B-4435 represent a separate lineage that is distantly related to the type strain of L. amylophilus, LMG 6900T, and to three other strains of the species. The MLSA data showed that the two strains LMG 11400 and NRRL B-4435 constituted a distinct cluster, sharing 100 % pheS and rpoA gene sequence similarity. The other reference strains clustered together with the type strain of L. amylophilus, LMG 6900T, and were clearly differentiated from strains LMG 11400 and NRRL B-4435 (80 and 89 % pheS and rpoA gene sequence similarity, respectively). The 16S rRNA gene sequences of the latter two strains are 100 % identical, with the nearest phylogenetic neighbour L. amylophilus LMG 6900T showing only 97.2 % 16S rRNA gene sequence similarity. Further polyphasic taxonomic study based on whole-cell protein fingerprinting, DNA–DNA hybridization and biochemical features demonstrated that the two strains represent a single, novel Lactobacillus species, for which the name Lactobacillus amylotrophicus sp. nov. is proposed. The type strain is LMG 11400T (=NRRL B-4436T=DSM 20534T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


2010 ◽  
Vol 60 (3) ◽  
pp. 500-503 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Natsuko Suzuki ◽  
Masaaki Okamoto

Two anaerobic, pigmented, non-spore-forming, Gram-stain-negative, rod-shaped strains isolated from the human oral cavity, OMA31T and OMA130, were characterized by determining their phenotypic and biochemical features, cellular fatty acid profiles and phylogenetic positions based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the new isolates belonged to a single species of the genus Prevotella. The two isolates showed 100 % 16S rRNA gene sequence similarity with each other and were most closely related to Prevotella intermedia ATCC 25611T with 96.4 % 16S rRNA gene sequence similarity; the next most closely related strains to the isolates were Prevotella pallens AHN 10371T (96.1 %) and Prevotella falsenii JCM 15124T (95.3 %). Phenotypic and biochemical characteristics of the isolates were the same as those of P. intermedia JCM 12248T, P. falsenii JCM 15124T and Prevotella nigrescens JCM 12250T. The isolates could be differentiated from P. pallens JCM 11140T by mannose fermentation and α-fucosidase activity. Conventional biochemical tests were unable to differentiate the new isolates from P. intermedia, P. falsenii and P. nigrescens. However, hsp60 gene sequence analysis suggested that strain OMA31T was not a representative of P. intermedia, P. pallens, P. falsenii or P. nigrescens. Based on these data, a novel species of the genus Prevotella, Prevotella aurantiaca sp. nov., is proposed, with OMA31T (=JCM 15754T=CCUG 57723T) as the type strain.


2010 ◽  
Vol 60 (9) ◽  
pp. 1999-2005 ◽  
Author(s):  
Katrien De Bruyne ◽  
Nicholas Camu ◽  
Luc De Vuyst ◽  
Peter Vandamme

Two lactic acid bacteria, strains 257T and 252, were isolated from traditional heap fermentations of Ghanaian cocoa beans. 16S rRNA gene sequence analysis of these strains allocated them to the genus Weissella, showing 99.5 % 16S rRNA gene sequence similarity towards Weissella ghanensis LMG 24286T. Whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and biochemical tests confirmed their unique taxonomic position. DNA–DNA hybridization experiments towards their nearest phylogenetic neighbour demonstrated that the two strains represent a novel species, for which we propose the name Weissella fabaria sp. nov., with strain 257T (=LMG 24289T =DSM 21416T) as the type strain. Additional sequence analysis using pheS gene sequences proved useful for identification of all Weissella–Leuconostoc–Oenococcus species and for the recognition of the novel species.


2010 ◽  
Vol 60 (12) ◽  
pp. 2984-2990 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Natsuko Suzuki ◽  
Yoshimi Benno

hsp60 gene sequences were determined for members of the genus Bacteroides and sequence similarities were compared with those obtained for the 16S rRNA gene. Among the 29 Bacteroides type strains, the mean sequence similarity of the hsp60 gene (84.5 %) was significantly less than that of the 16S rRNA gene (90.7 %), indicating a high discriminatory power of the hsp60 gene. Species of the genus Bacteroides were differentiated well by hsp60 gene sequence analysis, except for Bacteroides pyogenes JCM 6294T, Bacteroides suis JCM 6292T and Bacteroides tectus JCM 10003T. The hsp60 gene sequence analysis and the levels of DNA–DNA relatedness observed demonstrated that these three type strains are a single species. Consequently, B. suis and B. tectus are heterotypic synonyms of B. pyogenes. This study suggests that the hsp60 gene is an alternative phylogenetic marker for the classification of species of the genus Bacteroides.


2007 ◽  
Vol 57 (2) ◽  
pp. 342-346 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Pham Thi Ngoc Lan ◽  
Yoshimi Benno

Two bacterial strains isolated from chicken caecum, C46T and C47, were characterized using a polyphasic taxonomic approach that included analysis of the phenotypic and biochemical features, cellular fatty acid profiles, menaquinone profiles and phylogenetic position (using 16S rRNA gene sequence analysis). The 16S rRNA gene sequence analysis showed that these strains belonged to the family Porphyromonadaceae. These strains shared 100 % 16S rRNA gene sequence similarity with each other and were related to Parabacteroides distasonis (showing 86 % sequence similarity). The strains were found to be obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative rods. Growth of the strains was inhibited on medium containing 20 % bile. The major menaquinones of the isolates were MK-11 and MK-12. This menaquinone composition was different from those of other genera of the family Porphyromonadaceae, such as Parabacteroides (in which the predominant menaquinones are MK-9 and MK-10), Porphyromonas (MK-9 and MK-10) and Tannerella (MK-10 and MK-11). This is an important chemotaxonomic characteristic of these micro-organisms. The DNA G+C content of strain C46T is 52.0 mol%. On the basis of these data, strains C46T and C47 represent a novel genus and species, for which the name Barnesiella viscericola gen. nov., sp. nov. is proposed. The type strain of Barnesiella viscericola is C46T (=JCM 13660T=DSM 18177T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2586-2590 ◽  
Author(s):  
Ulrike Lyhs ◽  
Isabel Snauwaert ◽  
Seija Pihlajaviita ◽  
Luc De Vuyst ◽  
Peter Vandamme

A Gram-stain-positive, ovoid, lactic acid bacterium, strain LMG 27676T, was isolated from a spoiled sous-vide-cooked rutabaga. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the genus Leuconostoc, with Leuconostoc kimchii and Leuconostoc miyukkimchii as the nearest neighbours (99.1 and 98.8 % 16S rRNA gene sequence similarity towards the type strain, respectively). Phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of the pheS, rpoA and atpA genes, and biochemical and genotypic characteristics allowed differentiation of strain LMG 27676T from all established species of the genus Leuconostoc. Strain LMG 27676T ( = R-50029T = MHB 277T = DSM 27776T) therefore represents the type strain of a novel species, for which the name Leuconostoc rapi sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 781-786 ◽  
Author(s):  
Peter Kämpfer ◽  
Ramon Rosselló-Mora ◽  
Enevold Falsen ◽  
Hans-Jürgen Busse ◽  
Brian J. Tindall

A Gram-positive, rod-shaped, endospore-forming organism, strain CCUG 47242T, was isolated from a sample of industrial starch production in Sweden. 16S rRNA gene sequence analysis demonstrated that this isolate was moderately related to species of the genus Paenibacillus, with <94·4 % sequence similarity to all other hitherto described Paenibacillus species. Strain CCUG 47242T showed the greatest sequence similarity (96·5 %) to ‘Paenibacillus hongkongensis’ HKU3, a strain with a name that has not yet been validly published. Chemotaxonomic data [major menaquinone, MK-7 (98 %); major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phosphatidylglycerol, two unknown phospholipids, four unknown aminophospholipids; major fatty acids, iso-C16 : 0 and anteiso-C15 : 0] showed some significant differences when compared with the type species of the genus Paenibacillus, Paenibacillus polymyxa. Physiological and biochemical tests allowed clear phenotypic differentiation of strain CCUG 47242T from strain HKU3. On the basis of 16S rRNA gene sequence analysis, in combination with chemotaxonomic data, strains CCUG 47242T and HKU3 represent two novel species of a new genus of endospore-forming bacteria for which we propose the names Cohnella thermotolerans gen. nov., sp. nov. (type strain CCUG 47242T=CIP 108492T=DSM 17683T) and Cohnella hongkongensis sp. nov. (type strain HKU3T=CCUG 49571T=CIP 107898T=DSM 17642T).


Sign in / Sign up

Export Citation Format

Share Document