scholarly journals Selection of Recombinant, Library-Derived Antibody Fragments against p24 for Human Immunodeficiency Virus Type 1 Diagnostics

1998 ◽  
Vol 5 (5) ◽  
pp. 636-644 ◽  
Author(s):  
Hans J. W. de Haard ◽  
Bert Kazemier ◽  
Marck J. M. Koolen ◽  
Liekle J. Nijholt ◽  
Rob H. Meloen ◽  
...  

ABSTRACT By application of combinatorial library technology, we generated the first recombinant antibody fragments directed against the major capsid protein p24 of human immunodeficiency virus type 1 (HIV-1). A library of single-chain Fv fragments (scFvs) was constructed by using the antibody variable-region (V) genes of B cells derived from the spleen of a viral lysate-immunized mouse. Antibodies were selected by panning or by enrichment with biotinylated antigen, yielding four different families of antibody fragments. The different types of scFvs were characterized by affinity measurements, by antigen recognition on Western blots, and by pepscan analysis. The epitope of one of the scFvs is located near the residues involved in CypA binding, thereby making it an attractive candidate for therapeutic applications. Comparison of the V gene sequence of this scFV with that of a previously described monoclonal antibody reactive against this immunodominant epitope revealed the usage of the identical combination of VH and Vκ regions. Thus, this is one of the rare examples in which the original combination in a library-derived antibody fragment was retrieved. After appropriate affinity and format improvements, the best of our recombinant scFvs may form the basis for a sensitive p24 assay as a measure of viral load. In addition, anti-p24 scFvs could be expressed as intracellular antibodies (intrabodies) to aid in the treatment of HIV infections.

1998 ◽  
Vol 72 (8) ◽  
pp. 6960-6964 ◽  
Author(s):  
Nobuo Okui ◽  
Noriko Kobayashi ◽  
Yoshihiro Kitamura

ABSTRACT A single-chain antibody (scAb) against human immunodeficiency virus type 1 (HIV-1) integrase was expressed as a fusion protein of scAb and HIV-1 viral protein R (Vpr), together with the HIV-1 genome, in human 293T cells. The expression did not affect virion production much but markedly reduced the infectivity of progeny virions. The fusion protein was found to be incorporated into the virions. The incorporation appears to account for the reduced infectivity.


2009 ◽  
Vol 83 (23) ◽  
pp. 12336-12344 ◽  
Author(s):  
Linda L. Dunn ◽  
Mary Jane McWilliams ◽  
Kalyan Das ◽  
Eddy Arnold ◽  
Stephen H. Hughes

ABSTRACT Although human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been extensively studied, there are still significant questions about the effects of mutations on the maturation and stability of RT. We show here that a significant fraction (>80%) of the single point mutations we generated in the thumb subdomain of HIV-1 (RT) affect the stability of RT in virions. Fragments of the unstable mutant RTs can be detected in Western blots of virion proteins; however, the degree of degradation varies. The titers of the mutants whose virions contain degraded RTs are reduced. Some, but not all, of the unstable RT thumb subdomain mutants we analyzed have a temperature-sensitive phenotype. A preliminary survey of mutations in other subdomains of RT shows that some of these mutations also destabilize RT. The stability of the RT mutants is enhanced by the addition of a protease inhibitor, suggesting that the viral protease plays an important role in the degradation of the mutant RTs. These results confirm and extend earlier reports of mutations that affect the stability of RT in virions. The data suggest that the stability of a mutant RT in virions could be a major factor in determining the virus titer and, by extension, viral fitness, which could affect whether a mutation in RT is acceptable to the virus.


2003 ◽  
Vol 77 (12) ◽  
pp. 6965-6978 ◽  
Author(s):  
Michael B. Zwick ◽  
Robert Kelleher ◽  
Richard Jensen ◽  
Aran F. Labrijn ◽  
Meng Wang ◽  
...  

ABSTRACT The V1/V2 and V3 loops are proximal to the CD4 binding site (CD4bs) of human immunodeficiency virus type 1 (HIV-1) gp120 and undergo conformational change upon CD4 receptor engagement by the HIV-1 envelope spike. Nearly all of the reported monoclonal antibodies (MAbs) against the CD4bs exhibit a very limited capacity to neutralize HIV-1. However, one such human MAb, immunoglobulin G1 (IgG1) b12, is uniquely able to neutralize primary isolates across subtypes with considerable potency. The molecular basis for the anti-HIV-1 activity of b12 is not fully understood but is relevant to vaccine design. Here we describe a novel human MAb, 4KG5, whose binding to monomeric gp120 is moderately enhanced by IgG1 b12. In sharp contrast, 4KG5 binding to gp120 is inhibited by soluble CD4 (sCD4) and by all other (n = 14) anti-CD4bs MAbs tested. 4KG5 is unable to recognize gp120 in which either V1, V2, or V3 has been deleted, and MAbs against the V2 or V3 loops inhibit the binding of 4KG5 to gp120. Moreover, 4KG5 is able to inhibit the binding of the CD4-induced MAbs 17b and X5 in the absence of sCD4, whereas 17b and X5 only weakly inhibit the binding of 4KG5 to gp120. Mutagenesis of gp120 provides further evidence of a discontinuous epitope of 4KG5 that is formed by the V1/V2 loop, the V3 loop, and a portion of the bridging sheet (C4). 4KG5 was isolated as a single-chain Fv from a phage display library constructed from the bone marrow of an HIV-1-seropositive subject (FDA2) whose serum neutralizes HIV-1 across subtypes. Despite its source, we observed no significant neutralization with 4KG5 against the autologous (R2) virus and several other strains of HIV-1. The results suggest a model in which antibody access to the CD4bs on the envelope spike of HIV-1 is restricted by the orientation and/or dynamics of the V1/V2 and V3 loops, and b12 avoids these restrictions.


2009 ◽  
Vol 90 (3) ◽  
pp. 710-722 ◽  
Author(s):  
Lokesh Agrawal ◽  
Christina R. Maxwell ◽  
Paul J. Peters ◽  
Paul R. Clapham ◽  
Sue M. Liu ◽  
...  

CCR3 has been implicated as a co-receptor for human immunodeficiency virus type 1 (HIV-1), particularly in brain microglia cells. We sought to clarify the comparative roles of CCR3 and CCR5 in the central nervous system (CNS) HIV-1 infection and the potential utility of CCR3 as a target for manipulation via gene transfer. To target CCR3, we developed a single-chain antibody (SFv) and an interfering RNA (RNAi), R3-526. Coding sequences for both were cloned into Tag-deleted SV40-dervied vectors, as these vectors transduce brain microglia and monocyte-derived macrophages (MDM) highly efficiently. These anti-CCR3 transgenes were compared to SFv-CCR5, an SFv against CCR5, and RNAi-R5, an RNAi that targets CCR5, for the ability to protect primary human brain microglia and MDM from infection with peripheral and neurotropic strains of HIV-1. Downregulation of CCR3 and CCR5 by these transgenes was independent from one another. Confocal microscopy showed that CCR3 and CCR5 co-localized at the plasma membrane with each other and with CD4. Targeting either CCR5 or CCR3 largely protected both microglia and MDM from infection by many strains of HIV-1. That is, some HIV-1 strains, isolated from either the CNS or periphery, required both CCR3 and CCR5 for optimal productive infection of microglia and MDM. Some HIV-1 strains were relatively purely CCR5-tropic. None was purely CCR3-tropic. Thus, some CNS-tropic strains of HIV-1 utilize CCR5 as a co-receptor but do not need CCR3, while for other isolates both CCR3 and CCR5 may be required.


Sign in / Sign up

Export Citation Format

Share Document