scholarly journals Levels of Soluble CD40 Ligand (CD154) in Serum Are Increased in Human Immunodeficiency Virus Type 1-Infected Patients and Correlate with CD4+ T-Cell Counts

2002 ◽  
Vol 9 (3) ◽  
pp. 558-561 ◽  
Author(s):  
Nikolaos V. Sipsas ◽  
Petros P. Sfikakis ◽  
Athanasios Kontos ◽  
Theodore Kordossis

ABSTRACT CD40 ligand (CD40L or CD154) is a costimulatory molecule expressed mainly on activated CD4+ T cells. Concentrations of the soluble form of CD40L (sCD40L) in serum were determined for a cohort of 77 human immunodeficiency virus type 1 (HIV-1)-infected patients before and after initiation of highly active antiretroviral treatment (HAART) by a quantitative enzyme-linked immunosorbent assay. Circulating sCD40L levels were higher by twofold in untreated patients than in healthy controls (means ± standard deviations [SD]: 1.41 ± 1.48 versus 0.69 ± 0.59 ng/ml; P < 0.001). HIV-1-infected patients classified as CD4 T-cell category 1 had significantly higher sCD40L levels than patients classified as CD4 categories 2 and 3 (mean ± SD: 2.08 ± 1.46 ng/ml versus 1.57 ± 1.58 [category 2] and 0.94 ± 1.25 ng/ml [category 3]; P = 0.046), while no correlation with clinical categories A, B, and C was found. Individual serum sCD40L levels correlated with CD4+ T-cell counts (P = 0.039) but not with viral load, gamma globulin levels, or acute-inflammatory-response markers. After 8 to 12 months of HAART, a further threefold increase of serum sCD40L levels, which paralleled the increase of CD4+ T-cell counts, was observed. These novel findings suggest that sCD40L measurement in HIV-1-infected patients could serve as a new surrogate marker useful in the assessment of treatment efficacy, especially in settings where well-equipped laboratories and funding required for CD4+ T-cell count and viral load measurements are not available.

2006 ◽  
Vol 87 (5) ◽  
pp. 1285-1294 ◽  
Author(s):  
Guerau Fernàndez ◽  
Anuska Llano ◽  
Miriam Esgleas ◽  
Bonaventura Clotet ◽  
José A. Esté ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) infection is established by virus variants that use the CCR5 co-receptor for entry (CCR5-tropic or R5 variants), whereas viruses that use CXCR4 as co-receptor (CXCR4-tropic or X4 variants) emerge during disease progression in approximately 50 % of infected subjects. X4 variants may have a higher fitness ex vivo and their detection is usually accompanied by faster T-cell depletion and the onset of AIDS in HIV-1-positive individuals. Here, the relationship between the sequence variation of the HIV-1 env V3–V5 region and positive selective pressure on R5 and X4 variants from infected subjects with CD4 T cell counts below 200 cells μl−1 was studied. A correlation was found between genetic distance and CD4+ cell count at late stages of the disease. R5 variants that co-existed with X4 variants were significantly less heterogeneous than R5 variants from subjects without X4 variants (P<0·0001). Similarly, X4 variants had a significantly higher diversity than R5 variants (P<0·0001), although residues under positive selection had a similar distribution pattern in both variants. Therefore, both X4 and R5 variants were subjected to high selective pressures from the host. Furthermore, the interaction between X4 and R5 variants within the same subject resulted in a purifying selection on R5 variants, which only survived as a homogeneous virus population. These results indicate that R5 variants from X4 phenotype samples were highly homogeneous and under weakly positive selective pressures. In contrast, R5 variants from R5 phenotype samples were highly heterogeneous and subject to positive selective pressures.


2003 ◽  
Vol 77 (23) ◽  
pp. 12430-12440 ◽  
Author(s):  
Mark J. Geels ◽  
Marion Cornelissen ◽  
Hanneke Schuitemaker ◽  
Kiersten Anderson ◽  
David Kwa ◽  
...  

ABSTRACT Control of viremia in natural human immunodeficiency virus type 1 (HIV-1) infection in humans is associated with a virus-specific T-cell response. However, still much is unknown with regard to the extent of CD8+ cytotoxic T-lymphocyte (CTL) responses required to successfully control HIV-1 infection and to what extent CTL epitope escape can account for rises in viral load and ultimate progression to disease. In this study, we chose to monitor through full-length genome sequence of replication-competent biological clones the modifications that occurred within predicted CTL epitopes and to identify whether the alterations resulted in epitope escape from CTL recognition. From an extensive analysis of 59 biological HIV-1 clones generated over a period of 4 years from a single individual in whom the viral load was observed to rise, we identified the locations in the genome of five CD8+ CTL epitopes. Fixed mutations were identified within the p17, gp120, gp41, Nef, and reverse transcriptase genes. Using a gamma interferon ELIspot assay, we identified for four of the five epitopes with fixed mutations a complete loss of T-cell reactivity against the wild-type epitope and a partial loss of reactivity against the mutant epitope. These results demonstrate the sequential accumulation of CTL escape in a patient during disease progression, indicating that multiple combinations of T-cell epitopes are required to control viremia.


2002 ◽  
Vol 76 (5) ◽  
pp. 2298-2305 ◽  
Author(s):  
Bradley H. Edwards ◽  
Anju Bansal ◽  
Steffanie Sabbaj ◽  
Janna Bakari ◽  
Mark J. Mulligan ◽  
...  

ABSTRACT The importance of CD8+ T-cell responses in the control of human immunodeficiency virus type 1 (HIV-1) infection has been demonstrated, yet few studies have been able to correlate these responses with markers of HIV-1 disease progression. This study measured cell-mediated immune responses using peripheral blood mononuclear cells (PBMC) obtained from 27 patients with chronic HIV-1 infection, the majority of whom were off antiretroviral therapy. The ELISPOT assay was used to detect gamma interferon-secreting PBMC after stimulation with overlapping HIV-1 peptides spanning the Gag, Pol, Env, and Nef proteins in addition to the baculovirus-derived p24 and gp160 proteins. All volunteers had responses to at least one HIV-1-specific peptide. All but one of the subjects (96%) responded to the Gag peptide pool, and 86% responded to the Pol and/or Nef peptide pools. The magnitude and the breadth of T-cell responses directed to either the Gag or p24 peptide pools correlated inversely with viral load in plasma (r = −0.60, P < 0.001 and r = −0.52, P < 0.005, respectively) and directly with absolute CD4+ T-cell counts (r = 0.54, P < 0.01 and r = 0.39, P < 0.05, respectively) using the Spearman rank correlation test. Responses to the Pol and integrase peptide pools also correlated with absolute CD4+ T-cell counts (r = 0.45, P < 0.05 and r = 0.49, P < 0.01, respectively). No correlation with markers of disease progression was seen with specific T-cell responses directed toward the Env or Nef peptides. These data serve as strong evidence that major histocompatibility complex class I presentation of Gag peptides is an essential feature for any HIV-1 vaccine designed to elicit optimal CD8+ T-cell responses.


2004 ◽  
Vol 78 (19) ◽  
pp. 10747-10754 ◽  
Author(s):  
Angela Ciuffi ◽  
Gabriela Bleiber ◽  
Miguel Muñoz ◽  
Raquel Martinez ◽  
Corinne Loeuillet ◽  
...  

ABSTRACT Isolated primary human cells from different donors vary in their permissiveness—the ability of cells to be infected and sustain the replication of human immunodeficiency virus type 1 (HIV-1). We used replicating HIV-1 and single-cycle lentivirus vectors in a population approach to identify polymorphic steps during viral replication. We found that phytohemagglutinin-stimulated CD4+ CD45RO+ CD57− T cells from healthy blood donors (n = 128) exhibited a 5.2-log-unit range in virus production. For 20 selected donors representing the spectrum of CD4 T-cell permissiveness, we could attribute up to 42% of the total variance in virus production to entry factors and 48% to postentry steps. Efficacy at key intracellular steps of the replicative cycle (reverse transcription, integration, transcription and splicing, translation, and budding and release) varied from 0.71 to 1.45 log units among donors. However, interindividual differences in transcription efficiency alone accounted for 64 to 83% of the total variance in virus production that was attributable to postentry factors. While vesicular stomatitis virus G protein-mediated fusion was more efficacious than CCR5/CD4 entry, the latter resulted in greater transcriptional activity per proviral copy. The phenotype of provirus transcription was stable over time, indicating that it represents a genetic trait.


2009 ◽  
Vol 83 (22) ◽  
pp. 11715-11725 ◽  
Author(s):  
Vijay Sivaraman ◽  
Liguo Zhang ◽  
Eric G. Meissner ◽  
Jerry L. Jeffrey ◽  
Lishan Su

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-mediated depletion of CD4+ lymphocytes in an infected individual is the hallmark of progression to AIDS. However, the mechanism for this depletion remains unclear. To identify mechanisms of HIV-1-mediated CD4 T-cell death, two similar viral isolates obtained from a rapid progressor patient with significantly different pathogenic phenotypes were studied. One isolate (R3A) demonstrates enhanced pathogenesis in both in vivo models and relevant ex vivo lymphoid organ model systems compared to another isolate, R3B. The pathogenic determinants were previously mapped to the V5-gp41 envelope region, correlating functionally with enhanced fusion activity and elevated CXCR4 binding affinity. To further elucidate specific differences between R3A and R3B within the V5-gp41 domains that enhance CD4 depletion, R3A-R3B chimeras to study the V5-gp41 region were developed. Our data demonstrate that six residues in the ectodomain of R3A provide the major determinant for both enhanced Env-cell fusion and pathogenicity. Furthermore, three amino acid differences in the heptad repeat 2 (HR-2) domain of R3A determined its fusion activity and significantly elevated its pathogenic activity. The chimeric viruses with enhanced fusion activity, but not elevated CXCR4 affinity, correlated with high pathogenicity in the thymus organ. We conclude that the functional domain of a highly pathogenic HIV-1 Env is determined by mutations in the HR-2 region that contribute to enhanced fusion and CD4 T-cell depletion.


Sign in / Sign up

Export Citation Format

Share Document