scholarly journals Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

2015 ◽  
Vol 84 (2) ◽  
pp. 480-490 ◽  
Author(s):  
Erik D. Cram ◽  
Ryan S. Simmons ◽  
Amy L. Palmer ◽  
William H. Hildebrand ◽  
Daniel D. Rockey ◽  
...  

The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+cytotoxic T lymphocytes.Chlamydiaspp. are obligate intracellular bacteria and, as such, should be targeted by CD8+T cells. It is likely thatChlamydiaspp. have evolved mechanisms to avoid the CD8+killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of variousChlamydiaspecies to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted todefectiveribosomalproducts, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest thatChlamydiaspp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.

1992 ◽  
Vol 176 (3) ◽  
pp. 729-738 ◽  
Author(s):  
M del Val ◽  
H Hengel ◽  
H Häcker ◽  
U Hartlaub ◽  
T Ruppert ◽  
...  

Selective expression of murine cytomegalovirus (MCMV) immediate-early (IE) genes leads to the presentation by the major histocompatibility complex (MHC) class I molecule Ld of a peptide derived from MCMV IE protein pp89 (Reddehase, M.J., J. B. Rothbard, and U.H. Koszinowski. 1989. Nature (Lond.). 337:651). Characterization of endogenous antigenic peptides identified the pp89 peptide as the nonapeptide 168YPHFMPTNL176 (del Val, M., H.-J. Schlicht, T. Ruppert, M.J. Reddehase, and U.H. Koszinowski. 1991. Cell. 66:1145). Subsequent expression of MCMV early genes prevents presentation of pp89 (del Val, M., K. Münch, M.J. Reddehase, and U.H. Koszinowski. 1989. Cell. 58:305). We report on the mechanism by which MCMV early genes interfere with antigen presentation. Expression of the IE promoter-driven bacterial gene lacZ by recombinant MCMV subjected antigen presentation of beta-galactosidase to the same control and excluded antigen specificity. The Ld-dependent presence of naturally processed antigenic peptides also in nonpresenting cells located the inhibitory function subsequent to the step of antigen processing. The finding that during the E phase of MCMV gene expression the MHC class I heavy chain glycosylation remained in an Endo H-sensitive form suggested a block within the endoplasmic reticulum/cis-Golgi compartment. The failure to present antigenic peptides was explained by a general retention of nascent assembled trimolecular MHC class I complexes. Accordingly, at later stages of infection a significant decrease of surface MHC class I expression was seen, whereas other membrane glycoproteins remained unaffected. Thus, MCMV E genes endow this virus with an effective immune evasion potential. These results also indicate that the formation of the trimolecular complex of MHC class I heavy chain, beta 2-microglobulin, and the finally trimmed peptide is completed before entering the medial-Golgi compartment.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 158 ◽  
Author(s):  
Andy van Hateren ◽  
Alistair Bailey ◽  
Tim Elliott

We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation.


1996 ◽  
Vol 183 (4) ◽  
pp. 1545-1552 ◽  
Author(s):  
B Yang ◽  
Y S Hahn ◽  
C S Hahn ◽  
T J Braciale

Accumulating evidence has implicated the proteasome in the processing of protein along the major histocompatibility complex (MHC) class I presentation pathway. The availability of potent proteasome inhibitors provides an opportunity to examine the role of proteasome function in antigen presentation by MHC class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). We have investigated the processing and presenting of antigenic epitopes from influenza hemagglutinin in target cells treated with the inhibitor of proteasome activity MG132. In the absence of proteasome activity, the processing and presentation of the full-length hemagglutinin was abolished, suggesting the requirement for proteasome function in the processing and presentation of the hemagglutinin glycoprotein. Epitope-containing translation products as short as 21 amino acids when expressed in target cells required proteasome activity for processing and presentation of the hemagglutin epitope to CTLs. However, when endogenous peptides of 17 amino acids or shorter were expressed in target cells, the processing and presentation of epitopes contained in these peptides were insensitive to the proteasome inhibitor. Our results support the hypothesis that proteasome activity is required for the generation of peptides presented by MHC class I molecules and that the requirement for proteasome activity is dependent on the size of the translation product expressed in the target cell. The implications of these findings are discussed.


1998 ◽  
Vol 72 (6) ◽  
pp. 5076-5084 ◽  
Author(s):  
Pieter Jugovic ◽  
Ann M. Hill ◽  
Roman Tomazin ◽  
Hidde Ploegh ◽  
David C. Johnson

ABSTRACT Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) express an immediate-early protein, ICP47, that effectively inhibits the human transporter associated with antigen presentation (TAP), blocking major histocompatibility complex (MHC) class I antigen presentation to CD8+ T cells. Previous work indicated that the mouse TAP is relatively resistant to inhibition by the HSV-1 and HSV-2 ICP47 proteins (ICP47-1 and ICP47-2) and that mouse cells infected with HSV-1 are lysed by anti-HSV CD8+ cytotoxic T lymphocytes (CTL). Therefore, mice are apparently not suitable animals in which to study the in vivo effects of ICP47. In order to find an animal model, we introduced ICP47-1 and ICP47-2 into cells from various animal species—mice, rats, guinea pigs, rabbits, dogs, pigs, cows, monkeys, and humans—and measured TAP activity in the cells. Both proteins were unable to inhibit TAP in mouse, rat, guinea pig, and rabbit cells. In contrast, ICP47-1 and ICP47-2 inhibited TAP in pig, dog, cow, and monkey cells, and the TAP in pig and dog fibroblasts was often more sensitive to both proteins than TAP in human fibroblasts. These results were extended by measuring CD8+-T-cell recognition (CTL lysis) of cells from various species. Cells were infected with recombinant HSV-1 constructed to express murine MHC class I proteins so that the cells would be recognized and lysed by well-characterized murine anti-HSV CTL unless antigen presentation was blocked by ICP47. Anti-HSV CD8+ CTL effectively lysed pig and primate cells infected with a recombinant HSV-1 ICP47− mutant but were unable to lyse pig or primate cells infected with a recombinant HSV-1 that expressed ICP47. Therefore, pigs, dogs, and monkeys may be useful animal models in which to test the effects of ICP47 on HSV pathogenesis or the use of ICP47 as a selective immunosuppressive agent.


2017 ◽  
Vol 292 (13) ◽  
pp. 5262-5270 ◽  
Author(s):  
Soumya G. Remesh ◽  
Massimo Andreatta ◽  
Ge Ying ◽  
Thomas Kaever ◽  
Morten Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document