proteasome activity
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 106)

H-INDEX

64
(FIVE YEARS 6)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010015
Author(s):  
Cécile Ribot ◽  
Cédric Soler ◽  
Aymeric Chartier ◽  
Sandy Al Hayek ◽  
Rima Naït-Saïdi ◽  
...  

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.


2021 ◽  
Author(s):  
Minji Kim ◽  
Lukasz Samluk ◽  
Tomasz Maciej Stępkowski ◽  
Ida Suppanz ◽  
Remigiusz Adam Serwa ◽  
...  

Perturbed proteostasis and mitochondrial dysfunction are often associated with age-related diseases such as Alzheimer′s and Parkinson′s diseases. However, the link between them remains incompletely understood. Mitochondrial dysfunction causes proteostasis imbalance, and cells respond to restore proteostasis by increasing proteasome activity and molecular chaperons in yeast and C. elegans. Here, we demonstrate the presence of similar responses in humans. Mitochondrial dysfunction upregulates a small heat shock protein HSPB1 and an immunoproteasome subunit PSMB9 leading to an increase in proteasome activity. HSPB1 and PSMB9 are required to prevent protein aggregation upon mitochondrial dysfunction. Moreover, PSMB9 expression is dependent on a translation elongation factor EEF1A2, and PSMB9-containing proteasomes are located near mitochondria, enabling fast local degradation of aberrant proteins. Our findings put a step forward in understanding the stress response triggered by mitochondrial dysfunction, and may be useful for therapeutic strategies to prevent or delay the onset of age-related diseases and attenuate their progression.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Ahinara Amador-García ◽  
Johan Malmström ◽  
Lucia Monteoliva ◽  
Concha Gil

Candida albicans is a commensal fungus that causes systemic infections in immunosuppressed patients. In order to deal with the changing environment during commensalism or infection, C. albicans must reprogram its proteome. Characterizing the stress-induced changes in the proteome that C. albicans uses to survive should be very useful in the development of new antifungal drugs. We studied the C. albicans global proteome after exposure to hydrogen peroxide (H2O2) and acetic acid (AA), using a DIA-MS strategy. More than 2000 C. albicans proteins were quantified using an ion library previously constructed using DDA-MS. C. albicans responded to treatment with H2O2 with an increase in the abundance of many proteins involved in the oxidative stress response, protein folding and proteasome-dependent catabolism, which led to an increased proteasome activity. The data revealed a previously unknown key role for Prn1, a protein similar to pirins, in the oxidative stress response. Treatment with AA resulted in a general decrease in the abundance of proteins involved in amino acid biosynthesis, protein folding, and rRNA processing. Almost all proteasome proteins declined, as did proteasome activity. Apoptosis was observed after treatment with H2O2, but not AA. A targeted proteomic study of 32 proteins related to apoptosis in yeast supported the results found by DIA-MS and allowed the creation of an efficient method to quantify relevant proteins after treatment with stressors (H2O2, AA, and amphotericin B). This approach also uncovered a main role for Oye32, an oxidoreductase, suggesting this protein as a possible apoptotic marker common to many stressors.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dimitrios Draganidis ◽  
Athanasios Z. Jamurtas ◽  
Niki Chondrogianni ◽  
George Mastorakos ◽  
Tobias Jung ◽  
...  

Aging is associated with the development of chronic low-grade systemic inflammation (LGSI) characterized by increased circulating levels of proinflammatory cytokines and acute phase proteins such as C-reactive protein (CRP). Collective evidence suggests that elevated levels of inflammatory mediators such as CRP, interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) are correlated with deteriorated skeletal muscle mass and function, though the molecular footprint of this observation in the aged human skeletal muscle remains obscure. Based on animal models showing impaired protein synthesis and enhanced degradation in response to LGSI, we compared here the response of proteolysis- and protein synthesis-related signaling proteins as well as the satellite cell and amino acid transporter protein content between healthy older adults with increased versus physiological blood hs-CRP levels in the fasted (basal) state and after an anabolic stimulus comprised of acute resistance exercise (RE) and protein feeding. Our main findings indicate that older adults with increased hs-CRP levels demonstrate (i) increased proteasome activity, accompanied by increased protein carbonylation and IKKα/β phosphorylation; (ii) reduced Pax7+ satellite cells; (iii) increased insulin resistance, at the basal state; and (iv) impaired S6 ribosomal protein phosphorylation accompanied by hyperinsulinemia following an acute RE bout combined with protein ingestion. Collectively, these data provide support to the concept that age-related chronic LGSI may upregulate proteasome activity via induction of the NF-κB signaling and protein oxidation and impair the insulin-dependent anabolic potential of human skeletal muscle.


2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Francesco Canonico ◽  
Anna Severino ◽  
Massimiliano Camilli ◽  
Stefano Migliaro ◽  
Ramona Vinci ◽  
...  

Abstract Aims Perilipin 2 (PLIN2), a protein associated with intracellular lipid droplets (LDs), is involved in lipid metabolism of macrophages resident in atherosclerotic plaques and its up-regulation leads to LDs accumulation. LDs enlargement results in the macrophage transformation into foam cells, a key step for the onset of atherosclerosis. In the present study, we investigated the role of PLIN2 and its regulation mechanisms in atherosclerosis and plaque instability in patients with a diagnosis of ST-elevation myocardial infarction (STEMI) and stable chronic angina (SA). Methods and results We enrolled 120 patients with a diagnosis of STEMI and 42 SA patients with symptoms of stable effort angina lasting more than 12 months. Peripheral blood mononuclear cells (PBMCs) were isolated from EDTA whole blood samples through standard gradient centrifugation over Ficoll-Hypaque. Monocytes were purified through indirect magnetic labelling of PBMCs. PLIN2 mRNA expression was investigated by Real Time-PCR and PLIN2 protein level was analysed in CD14+ monocytes by flow cytometry. Proteasome activity was assayed using AMC-tagged peptide substrate (Succ-LLVY-AMC), which releases free highly fluorescent AMC (Ex/Em 350/440 nm) in the presence of proteolytic activity. In CD14+ monocyte, PLIN2 protein expression was significantly increased in STEMI as compared to SA patients (P < 0.001), while PLIN2 mRNA level was not different in the two groups (P = n.s.). Despite proteasome activity was higher in STEMI as compared to SA patients (P < 0.001), significant inverse correlations were evident between PLIN2 levels and proteasome activity in the two groups (P = 0.05). Conclusions CD14+ monocyte PLIN2 protein expression was higher in STEMI as compared to SA patients suggesting an involvement in plaque instability. Despite proteasome activity was higher in STEMI patients, probably due to the elevated inflammatory burden, PLIN2 could escape proteasome degradation in a more efficient manner in STEMI as compared to SA patients.


2021 ◽  
Author(s):  
Mahlon Collins ◽  
Randi R. Avery ◽  
Frank W Albert

The bulk of targeted cellular protein degradation is performed by the proteasome, a multi-subunit complex consisting of the 19S regulatory particle, which binds, unfolds, and translocates substrate proteins, and the 20S core particle, which degrades them. Protein homeostasis requires precise, dynamic control of proteasome activity. To what extent genetic variation creates differences in proteasome activity is almost entirely unknown. Using the ubiquitin-independent degrons of the ornithine decarboxylase and Rpn4 proteins, we developed reporters that provide high-throughput, quantitative measurements of proteasome activity in vivo in genetically diverse cell populations. We used these reporters to characterize the genetic basis of variation in proteasome activity in the yeast Saccharomyces cerevisiae. We found that proteasome activity is a complex, polygenic trait, shaped by variation throughout the genome. Genetic influences on proteasome activity were predominantly substrate-specific, suggesting that they primarily affect the function or activity of the 19S regulatory particle. Our results demonstrate that individual genetic differences create heritable variation in proteasome activity and suggest that genetic effects on proteasomal protein degradation may be an important source of variation in cellular and organismal traits.


2021 ◽  
Author(s):  
Magdalena Oron ◽  
Marcin Grochowski ◽  
Akanksha Jaiswar ◽  
Magdalena Nowak-Niezgoda ◽  
Malgorzata Kolos ◽  
...  

Human neoplasias are often addicted to the cellular proteasome machinery. This has led to the development of bortezomib and carfilzomib proteasome inhibitors, approved for the treatment of multiple myeloma. Cancers, however, were found resistant to the proteasome inhibition in clinical trials, suggesting effective, cancer-specific compensatory responses. Here we employed global proteomics to determine contributions of compensatory mechanisms upon the proteasome inhibition with carfilzomib - in the cells of multiple myeloma, normal fibroblasts, and cancers of lung, colon, and pancreas. A pathway-oriented siRNA screen based on proteomics results showed that molecular chaperones, autophagy- and endocytosis-related proteins are cancer-specific vulnerabilities in combination with carfilzomib. HSP70 family chaperones HSPA1A/B were the most universal proteasome inhibition responders in the proteomes of all the studied cell types and HSPA1A/B inhibition most specifically sensitized cancer cells to carfilzomib in cell lines, patient-derived organoids and mouse xenografts. Overlap of proteomics with RNA-seq data showed that the proteasome inhibition-dependent HSPA1A/B induction in cancer cells is mainly transcription-driven and HSF1/2-dependent. Consequently, we found that a high level of HSPA1A/B mRNA is associated with a low proteasome activity in cancer patient tissues and is a risk factor in cancer patients with the low level of expression of the proteasome. Functionally, the HSPA1A/B induction does not affect a proteasome expression bounce-back upon the carfilzomib treatment, while it supports other mechanisms of the proteasome inhibition response - autophagy, unfolded protein response, and directly the 26S proteasome activity. We found that the 26S proteasome is chaperoned and protected from the inhibition with carfilzomib by HSPA1A/B assisted by DNAJB1 co-chaperone in cancer cells and using purified protein system in vitro. Thus, we define HSPA1A/B as a central player in the cellular compensatory response to the decreased proteasome activity, and the sensitive target in cancer cells with the inhibited proteasome.


Author(s):  
Emily R. Hunt ◽  
Steven M. Davi ◽  
Cassandra N. Parise ◽  
Kaleigh Clark ◽  
Douglas W. Van Pelt ◽  
...  

Many patients with anterior cruciate ligament (ACL) injuries have persistent quadriceps muscle atrophy, even after considerable time in rehabilitation. Understanding the factors that regulate muscle mass, and the time course of atrophic events, is important for identifying therapeutic interventions. Using a non-invasive animal model of ACL injury, a longitudinal study was performed to elucidate key parameters underlying quadriceps muscle atrophy. Male Long-Evans rats were euthanized at 6, 12, 24, 48-hrs and 1, 2, 4-wks after ACL injury that was induced via tibial compression overload; controls were not injured. Vastus Lateralis muscle size was determined by wet weight and fiber CSA. Evidence of disrupted neuromuscular communication was assessed via the expression of NCAM and genes associated with denervation and neuromuscular junction instability. Abundance of MuRF-1, MAFbx, and 45s pre-rRNA along with 20S proteasome activity were determined to investigate mechanisms related to muscle atrophy. Lastly, muscle damage-related parameters were assessed by measuring IgG permeability, centronucleation, CD68 mRNA and satellite cell abundance. Compared to controls, we observed a greater percentage of NCAM positive fibers at 6-hrs post-injury, followed by higher MAFbx abundance 48-hrs post-injury, and higher 20S proteasome activity at 1-wk post-injury. A loss of muscle wet weight, smaller fiber CSA and the elevated expression of Runx1 were also observed at the 1-wk post-injury time point relative to controls. There also were no differences observed in any damage markers. These results indicate that alterations in neuromuscular communication precede the upregulation of atrophic factors that regulate quadriceps muscle mass early after non-invasive ACL injury.


2021 ◽  
Vol 5 (2) ◽  
pp. e202000730
Author(s):  
Ilia Kats ◽  
Christian Reinbold ◽  
Marc Kschonsak ◽  
Anton Khmelinskii ◽  
Laura Armbruster ◽  
...  

N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin–independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.


Sign in / Sign up

Export Citation Format

Share Document