scholarly journals Cholera toxin effects on fluid secretion, adenylate cyclase, and cyclic AMP in porcine small intestine.

1978 ◽  
Vol 21 (2) ◽  
pp. 373-380 ◽  
Author(s):  
G W Forsyth ◽  
D L Hamilton ◽  
K E Goertz ◽  
M R Johnson
1994 ◽  
Vol 297 (1) ◽  
pp. 233-239 ◽  
Author(s):  
P A Stevens ◽  
S Pyne ◽  
M Grady ◽  
N J Pyne

Treatment of cultured tracheal smooth-muscle cells (TSM) with phorbol 12-myristate 13-acetate (PMA) (100 nM) or bradykinin (100 nM) elicited enhanced basal and guanosine 5′-[beta gamma-imido]-triphosphate-stimulated adenylate cyclase activities in subsequently isolated membranes. Combined stimulation of cells was non-additive, indicating that both agents activate adenylate cyclase via similar routes. Both PMA (100 nM) and bradykinin (100 nM) allowed the alpha subunit of Gs to act as a more favourable substrate for its cholera-toxin-catalysed ADP-ribosylation in vitro. PMA was without effect on intracellular cyclic AMP in control cells. However, constitutive activation of Gs by treatment in vivo with cholera toxin (0.5 ng/ml, 18 h) sensitized the cells to PMA stimulation, resulting in a concentration-dependent increase in intracellular cyclic AMP accumulation (EC50 = 7.3 +/- 2.5 nM, n = 5). Bradykinin also elicited a concentration-dependent increase in intracellular cyclic AMP (EC50 = 63.3 +/- 14.5 nM, n = 3). Constitutive activation of Gs resulted in an increased maximal response (10-fold) and potency (EC50 = 6.17 +/- 1.6 nM, n = 3) to bradykinin. This response was not affected by the B2-receptor antagonist, NPC567 [which selectively blocks bradykinin-stimulated phospholipase C (PLC), with minor activity against phospholipase D (PLD) activity]. Des-Arg9-bradykinin (a B1-receptor agonist) was without activity. These results suggest that the receptor sub-type capable of activating PLD may also be stimulatory for cyclic AMP accumulation. Furthermore, pre-treatment of the cells with butan-l-ol (0.3%, v/v), which traps phosphatidate derived from PLD reactions, blocked the bradykinin-stimulated increase in intracellular cyclic AMP. These studies suggest that there may be a causal link between PLD-derived phosphatidate and the positive modulation of adenylate cyclase activity. In support of this, the concentration-dependence for bradykinin-stimulated adenylate cyclase activity was identical with that of bradykinin-stimulated phospholipase D activity (EC50 = 5 nM). Bradykinin, but not PMA, was also capable of eliciting the inhibition of cyclic AMP phosphodiesterase activity in TSM cells (EC50 > 100 nM) via an unidentified mechanism. These studies indicate that cross-regulation between the cyclic AMP pathway and phospholipid-derived second messengers in TSM cells does not occur as a consequence of PLC-catalysed PtdIns(4,5)P2 hydrolysis, but may involve, in part, PLD-catalysed phosphatidylcholine hydrolysis.


1983 ◽  
Vol 212 (3) ◽  
pp. 669-678 ◽  
Author(s):  
R J Hughes ◽  
P A Insel

Cholera toxin is unable to elevate cyclic AMP levels in intact human platelets despite being very efficacious in this respect in other mammalian cells; in the presence of 0.5 mM-isobutylmethylxanthine, we found that 3-6nM-cholera toxin over 3h at 37 degrees C elevated platelet cyclic AMP from 33 +/- 13 to 39 +/- 12pmol/mg of protein (means +/- S.D.; n = 12). We have investigated the basis for this lack of response. 125I-labelled cholera toxin bound to platelets both saturably and with high affinity (Kd congruent to 60pM; Bmax. congruent to 50fmol/mg of protein). Incubation of platelets with the putative cholera toxin receptor monosialoganglioside GM1 enhanced 125I-labelled cholera toxin binding at least 40-fold but facilitated only a minimal (less than or equal to 3-fold) elevation of platelet cyclic AMP levels. In contrast, dithiothreitol-activated cholera toxin markedly stimulated adenylate cyclase activity in platelet membranes. Platelet cytosol both enhanced stimulation of adenylate cyclase activity by activated cholera toxin (A1 subunit) and supported stimulation by the A1-A2 subunit of cholera toxin. Neither GTP nor NAD+, both necessary for response to cholera toxin, was lacking in intact platelets. However, we found that platelets were unable to cleave cholera toxin to the active A1 subunit (as assessed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis). By contrast, murine S49 lymphoma cells were able to generate the A1 subunit with a time course that closely resembled the kinetics of toxin-mediated cyclic AMP accumulation in these cells. Thus we conclude that human platelets are defective in their ability to process surface-bound cholera toxin. These results indicate that binding of cholera toxin to surface receptors is necessary, but not sufficient, for expression of the toxin effect and the generation of the A1 subunit of the toxin may be rate-limiting for expression of cholera toxin response.


1985 ◽  
Vol 239 (2) ◽  
pp. 587-594 ◽  
Author(s):  
Pedro S. Lazo ◽  
Francisco Barros ◽  
Pedro Domínguez ◽  
Alfonso Rivaya ◽  
Gloria Velasco

Gut ◽  
1996 ◽  
Vol 38 (6) ◽  
pp. 853-858 ◽  
Author(s):  
I R Sanderson ◽  
Z Xu ◽  
S W Chu ◽  
Q Y Xie ◽  
L J Levine ◽  
...  

1993 ◽  
Vol 105 (5) ◽  
pp. 1286-1293 ◽  
Author(s):  
Mats Jodal ◽  
Susanne Holmgren ◽  
Ove Lundgren ◽  
Anders Sjöqvist

1975 ◽  
Vol 7 (3) ◽  
pp. 137-144 ◽  
Author(s):  
Kiyoshi Kurokawa ◽  
Robert M. Friedler ◽  
Shaul G. Massry

1982 ◽  
Vol 243 (3) ◽  
pp. H434-H441
Author(s):  
A. J. Pappano ◽  
P. M. Hartigan ◽  
M. D. Coutu

Acetylcholine (ACh, 10(-6) M) had no effect on basal adenylate cyclase activity (3.4 +/- 0.56 pmol cyclic AMP . min-1 . mg wet wt-1), adenosine 3',5'-cyclic monophosphate (cyclic AMP) content (0.88 +/- 0.09 pmol/mg wet wt), or the force of contraction in paced (2.5 Hz) chick embryo right ventricles superfused with Tyrode solution. After 60-180 min of superfusion in the presence of cholera toxin (5 x 10(-6) g/ml), adenylate cyclase activity (1.7 times), cyclic AMP content (2.4 times), and contractility (2.4 times) had increased significantly above basal levels. ACh reversed the positive inotropic effect of cholera toxin but did not change the increased activity of adenylate cyclase and content of cyclic AMP obtained in cholera toxin. Stimulation of adenylate cyclase by isoproterenol (ISO) was inhibited by ACh in the absence and presence of cholera toxin. ACh did not change guanosine 3',5'-cyclic monophosphate (cyclic GMP) content in the absence or presence of cholera toxin. Cholera toxin has actions on chick embryo ventricle similar to those of the beta-adrenergic agonist, ISO, and the phosphodiesterase inhibitor, isobutylmethylxanthine. The ability of ACh to reverse the positive inotropic effect of cholera toxin without preventing the accumulation of cyclic AMP may involve the prevention or reversal of cyclic AMP-dependent phosphorylation. In this regard, reduction of Ca2+ influx through voltage-sensitive membrane channels may be an essential component of muscarinic inhibition.


1978 ◽  
Vol 56 (4) ◽  
pp. 280-286 ◽  
Author(s):  
G. W. Forsyth ◽  
D. L. Hamilton ◽  
K. E. Goertz ◽  
L. W. Oliphant

Cholera toxin is thought to cause intestinal secretion by activating adenylate cyclase and increasing intracellular 3′,5′-cyclic AMP concentrations in intestinal mucosa. Cholera toxin causes profuse secretion of fluid into ligated intestinal loops of both pigs and rabbits, but cholera toxin-induced increases in 3′,5′-cyclic AMP concentration are much lower in the pig than in the rabbit. Porcine jejunal adenylate cyclase was examined for unusual properties which might account for a lack of 3′-5′-cyclic AMP accumulation after treatment with cholera toxin. The divalent cation requirements, the pH optimum, and the stimulation by fluoride ion were unremarkable. The Km for ATP was 0.11 mM with negative cooperativity indicated by a Hill coefficient of 0.83. Triton X-100 was inhibitory and guanosine diphosphate methylene phosphate stimulated enzyme activity. Adenylate cyclase activity was highest in the basal and lateral membrane fractions of jejunal mucosa and relatively low in brush-border preparations. Pretreatment of pig jejunum with cholera toxin caused a 30–40% activation of the crude and of the partly purified enzyme. A relatively low activation of adenylase cyclase in pigjejunal mucosa, compared with rabbit, may account for the absence of 3′,5′-cyclic AMP accumulation after cholera-toxin treatment in the pig.


Sign in / Sign up

Export Citation Format

Share Document