scholarly journals Cryptosporidium parvum in calves: kinetics and immunoblot analysis of specific serum and local antibody responses (immunoglobulin A [IgA], IgG, and IgM) after natural and experimental infections.

1992 ◽  
Vol 60 (6) ◽  
pp. 2309-2316 ◽  
Author(s):  
J E Peeters ◽  
I Villacorta ◽  
E Vanopdenbosch ◽  
D Vandergheynst ◽  
M Naciri ◽  
...  
Author(s):  
Carlo Cervia ◽  
Jakob Nilsson ◽  
Yves Zurbuchen ◽  
Alan Valaperti ◽  
Jens Schreiner ◽  
...  

AbstractBackgroundInfection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute illness termed coronavirus disease 2019 (COVID-19). Humoral immune responses likely play an important role in containing SARS-CoV-2, however, the determinants of SARS-CoV-2-specific antibody responses are unclear.MethodsUsing immunoassays specific for the SARS-CoV-2 spike protein, we determined SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in sera and mucosal fluids of two cohorts, including patients with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR)-confirmed SARS-CoV-2 infection (n = 56; median age 61 years) with mild versus severe COVID-19, and SARS-CoV-2-exposed healthcare workers (n = 109; median age 36 years) with or without symptoms and tested negative or positive by RT-qPCR.FindingsOn average, SARS-CoV-2-specific serum IgA titers in mild COVID-19 cases became positive eight days after symptom onset and were often transient, whereas serum IgG levels remained negative or reached positive values 9–10 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers as a function of duration since symptom onset, independent of patient age and comorbidities. Very high levels of SARS-CoV-2-specific serum IgA correlated with severe acute respiratory distress syndrome (ARDS). Interestingly, some of the SARS-CoV-2-exposed healthcare workers with negative SARS-CoV-2-specific IgA and IgG serum titers had detectable SARS-CoV-2-specific IgA antibodies in their nasal fluids and tears. Moreover, SARS-CoV-2-specific IgA levels in nasal fluids of these healthcare workers were inversely correlated with patient age.InterpretationThese data show that systemic IgA and IgG production against SARS-CoV-2 develops mainly in severe COVID-19, with very high IgA levels seen in patients with severe ARDS, whereas mild disease may be associated with transient serum titers of SARS-CoV-2-specific antibodies but stimulate mucosal SARS-CoV-2-specific IgA secretion. The findings suggest four grades of antibody responses dependent on COVID-19 severity.


1999 ◽  
Vol 67 (8) ◽  
pp. 3947-3951 ◽  
Author(s):  
Andrew A. Adjei ◽  
Janet T. Jones ◽  
Michael W. Riggs ◽  
F. Javier Enriquez

ABSTRACT Differences in susceptibility to persistent cryptosporidial infection between two strains of adult athymic nude mice prompted us to investigate the immune mechanism(s) that may control resistance to infection in these T-cell-deficient mice. We studied fecal oocyst shedding, serum and fecal parasite-specific antibody responses, and fecal immunoglobulin levels in athymic C57BL/6J nude and athymic BALB/cJ nude mice following oral inoculation with Cryptosporidium parvum oocysts at 8 to 9 weeks of age. C57BL/6J nude mice had significantly higher fecal parasite-specific immunoglobulin A (IgA) (days 27, 31, 35, and 42 postinoculation) and IgM (days 10, 17, 24, 28, 31, 38, 42, and 48 postinoculation) levels than BALB/cJ nude mice (P < 0.05) and significantly higher serum parasite-specific IgA levels at 63 days postinoculation (P < 0.03). Moreover, C57BL/6J nude mice shed significantly fewer C. parvum oocysts than BALB/cJ nude mice from days 52 to 63 postinoculation (P < 0.05). In contrast, BALB/cJ nude mice had higher levels of non-parasite-specific IgA (days 38 to 63 postinoculation) and IgM (days 24, 35, 38, and 52 postinoculation) than C57BL/6J nude mice in feces (P < 0.05). These data suggest that parasite-specific fecal antibodies may be associated with resistance to C. parvum in C57BL/6J nude mice.


Author(s):  
Claudia Seikrit ◽  
Oliver Pabst

AbstractAntibodies are key elements of protective immunity. In the mucosal immune system in particular, secretory immunoglobulin A (SIgA), the most abundantly produced antibody isotype, protects against infections, shields the mucosal surface from toxins and environmental factors, and regulates immune homeostasis and a peaceful coexistence with our microbiota. However, the dark side of IgA biology promotes the formation of immune complexes and provokes pathologies, e.g., IgA nephropathy (IgAN). The precise mechanisms of how IgA responses become deregulated and pathogenic in IgAN remain unresolved. Yet, as the field of microbiota research moved into the limelight, our basic understanding of IgA biology has been taking a leap forward. Here, we discuss the structure of IgA, the anatomical and cellular foundation of mucosal antibody responses, and current concepts of how we envision the interaction of SIgA and the microbiota. We center on key concepts in the field while taking account of both historic findings and exciting new observations to provide a comprehensive groundwork for the understanding of IgA biology from the perspective of a mucosal immunologist.


2000 ◽  
Vol 68 (9) ◽  
pp. 5068-5074 ◽  
Author(s):  
Sara M. Dann ◽  
Pablo C. Okhuysen ◽  
Bassam M. Salameh ◽  
Herbert L. DuPont ◽  
Cynthia L. Chappell

ABSTRACT This study examined the intestinal antibody response in 26 healthy volunteers challenged with Cryptosporidium parvum oocysts. Fecal extracts were assayed for total secretory immunoglobulin A (IgA) and C. parvum-specific IgA reactivity. Specific IgA reactivity was standardized to IgA concentration and expressed as a reactivity index (RI). Anti-C. parvum fecal IgA (fIgA) increased significantly in 17 of 26 (65.4%) following oocyst ingestion. Of those with detectable responses, 59, 76.5, and 94.1% were positive by days 7, 14, and 30, respectively. Volunteers receiving high challenge doses (>1,000 and 300 to 500 oocysts) had higher RIs (RI = 5.57 [P = 0.027] and RI = 1.68 [P = 0.039], respectively) than those ingesting low doses (30 to 100 oocysts; RI = 0.146). Subjects shedding oocysts and experiencing a diarrheal illness had the highest fIgA reactivity. When evaluated separately, oocyst excretion was associated with an increased fIgA response compared to nonshedders (RI = 1.679 versus 0.024, respectively; P = 0.003). However, in subjects experiencing diarrhea with or without oocyst shedding, a trend toward a higher RI (P = 0.065) was seen. Extracts positive for fecal IgA were further examined for IgA subclass. The majority of stools contained both IgA1 and IgA2, and the relative proportions did not change following challenge. Also, no C. parvum-specific IgM or IgG was detected in fecal extracts. Thus, fecal IgA to C. parvum antigens was highly associated with infection in subjects who had no evidence of previous exposure and may provide a useful tool in detecting recent infections.


2005 ◽  
Vol 86 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Laryssa Howe ◽  
Jodi K. Craigo ◽  
Charles J. Issel ◽  
Ronald C. Montelaro

It has been previously reported that transient corticosteroid immune suppression of ponies experimentally infected with a highly neutralization resistant envelope variant of equine infectious anemia virus (EIAV), designated EIAVΔPND, resulted in the appearance of type-specific serum antibodies to the infecting EIAVΔPND virus. The current study was designed to determine if this induction of serum neutralizing antibodies was associated with changes in the specificity of envelope determinants targeted by serum antibodies or caused by changes in the nature of the antibodies targeted to previously defined surface envelope gp90 V3 and V4 neutralization determinants. To address this question, the envelope determinants of neutralization by post-immune suppression serum were mapped. The results demonstrated that the neutralization sensitivity to post-immune suppression serum antibodies mapped specifically to the surface envelope gp90 V3 and V4 domains, individually or in combination. Thus, these data indicate that the development of serum neutralizing antibodies to the resistant EIAVΔPND was due to an enhancement of host antibody responses caused by transient immune suppression and the associated increase in virus replication.


2005 ◽  
Vol 12 (10) ◽  
pp. 1235-1237 ◽  
Author(s):  
M. Nawa ◽  
T. Takasaki ◽  
M. Ito ◽  
S. Inoue ◽  
K. Morita ◽  
...  

ABSTRACT We determined the usefulness of an immunoglobulin A (IgA) antibody-capture enzyme-linked immunosorbent assay for serodiagnosis of dengue virus infections. The results indicate that the presence of IgA and IgM in serum samples assures recent primary dengue virus infection even with a single serum sample.


2011 ◽  
Vol 175 (1-2) ◽  
pp. 178-181 ◽  
Author(s):  
A.J. Burton ◽  
D.V. Nydam ◽  
G. Jones ◽  
J.A. Zambriski ◽  
T.C. Linden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document