acute phase
Recently Published Documents


TOTAL DOCUMENTS

8644
(FIVE YEARS 1540)

H-INDEX

149
(FIVE YEARS 12)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xi Chen ◽  
Fang Liu ◽  
Baoying Zheng ◽  
Xiaohui Kang ◽  
Xiaolin Wang ◽  
...  

Severe mycoplasma pneumoniae pneumonia (MPP) in children presents with serious clinical complications. Without proper and prompt intervention, it could lead to deadly consequences. Dynamics of the inflammatory airway milieu and activation status of immune cells were believed to be the hallmark of the pathogenesis and progress of the disease. In this study, by employing the T-cell sorting and mRNA microarray, we were able to define the main feature of the chemokine/cytokine expression and the unique characteristics of T cells in the bronchoalveolar lavage fluid (BALF) from severe MPP patients at acute phase. Our study for the first time delineated the molecular changes in isolated BALF T cells in severe MPP children with respect to the cytokine/chemokine expression, cell activation, exhaustion, and apoptosis. By comparing the BALF aqueous expression of cytokines/chemokines with that in sorted T cells, our data give a preliminary clue capable of finishing out the possible cell source of the proinflammatory cytokines/chemokines from the BALF mixture. Meanwhile, our data provide a distinctively pellucid expression profile particularly belonging to the isolated BALF T cells demonstrating that in the inflammatory airway, overactivated T cells were exhausted and on the verge of apoptotic progress.


2022 ◽  
Vol 12 ◽  
Author(s):  
Laura Warner ◽  
Annika Bach-Hagemann ◽  
Walid Albanna ◽  
Hans Clusmann ◽  
Gerrit A. Schubert ◽  
...  

Objective: Impaired cerebral blood flow (CBF) regulation, such as reduced reactivity to hypercapnia, contributes to the pathophysiology after aneurysmal subarachnoid hemorrhage (SAH), but temporal dynamics in the acute phase are unknown. Featuring comparable molecular regulation mechanisms, the retinal vessels participate in chronic and subacute stroke- and SAH-associated vessel alterations in patients and can be studied non-invasively. This study is aimed to characterize the temporal course of the cerebral and retinal vascular reactivity to hypercapnia in the acute phase after experimental SAH and compare the potential degree of impairment.Methods: Subarachnoid hemorrhage was induced by injecting 0.5 ml of heparinized autologous blood into the cisterna magna of male Wistar rats using two anesthesia protocols [isoflurane/fentanyl n = 25 (Sham + SAH): Iso—Group, ketamine/xylazine n = 32 (Sham + SAH): K/X—Group]. CBF (laser speckle contrast analysis) and physiological parameters were measured continuously for 6 h. At six predefined time points, hypercapnia was induced by hypoventilation controlled via blood gas analysis, and retinal vessel diameter (RVD) was determined non-invasively.Results: Cerebral reactivity and retinal reactivity in Sham groups were stable with only a slight attenuation after 2 h in RVD of the K/X—Group. In the SAH Iso—Group, cerebral and retinal CO2 reactivity compared to baseline was immediately impaired starting at 30 min after SAH (CBF p = 0.0090, RVD p = 0.0135) and lasting up to 4 h (p = 0.0136, resp. p = 0.0263). Similarly, in the K/X—Group, cerebral CO2 reactivity was disturbed early after SAH (30 min, p = 0.003) albeit showing a recovery to baseline after 2 h while retinal CO2 reactivity was impaired over the whole observation period (360 min, p = 0.0001) in the K/X—Group. After normalization to baseline, both vascular beds showed a parallel behavior regarding the temporal course and extent of impairment.Conclusion: This study provides a detailed temporal analysis of impaired cerebral vascular CO2 reactivity starting immediately after SAH and lasting up to 6 h. Importantly, the retinal vessels participate in these acute changes underscoring the promising role of the retina as a potential non-invasive screening tool after SAH. Further studies will be required to determine the correlation with functional outcomes.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
José Rodrigues do Carmo Neto ◽  
Arthur Wilson Florêncio da Costa ◽  
Yarlla Loyane Lira Braga ◽  
Fernanda Hélia Lucio ◽  
Ana Luisa Monteiro dos Santos Martins ◽  
...  

The objective of this study was to evaluate the histopathological changes caused by infection with the Colombian strain of Trypanosoma cruzi (T. cruzi) in the acute and chronic experimental phases. C57Bl/6 mice were infected with 1000 trypomastigote forms of the Colombian strain of T. cruzi. After 30 days (acute phase) and 90 days (early chronic phase) of infection, the animals were euthanized, and the colon was collected and divided into two parts: proximal and distal. The distal portion was used for histopathological analysis, whereas the proximal portion was used for quantification of pro- and anti-inflammatory cytokines. In addition, the weight of the animals and parasitemia were assessed. The infection induced gradual weight loss in the animals. In addition, the infection induced an increase in interferon gamma (IFNγ) and tumor necrosis factor-alpha (TNF-α) in the intestine in the acute phase, in which this increase continued until the early chronic phase. The same was observed in relation to the presence of intestinal inflammatory infiltrates. In relation to interleukin (IL)-10, there was an increase only in the early chronic phase. The Colombian strain infection was also able to induce neuronal loss in the myenteric plexus and deposition of the collagen fibers during the acute phase. The Colombian strain of T. cruzi is capable of causing histopathological changes in the intestine of infected mice, especially in inducing neuronal destructions. Thus, this strain can also be used to study the intestinal form of Chagas disease in experimental models.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Wolfgang H. Hartl ◽  
Philipp Kopper ◽  
Andreas Bender ◽  
Fabian Scheipl ◽  
Andrew G. Day ◽  
...  

Abstract Background Proteins are an essential part of medical nutrition therapy in critically ill patients. Guidelines almost universally recommend a high protein intake without robust evidence supporting its use. Methods Using a large international database, we modelled associations between the hazard rate of in-hospital death and live hospital discharge (competing risks) and three categories of protein intake (low: < 0.8 g/kg per day, standard: 0.8–1.2 g/kg per day, high: > 1.2 g/kg per day) during the first 11 days after ICU admission (acute phase). Time-varying cause-specific hazard ratios (HR) were calculated from piece-wise exponential additive mixed models. We used the estimated model to compare five different hypothetical protein diets (an exclusively low protein diet, a standard protein diet administered early (day 1 to 4) or late (day 5 to 11) after ICU admission, and an early or late high protein diet). Results Of 21,100 critically ill patients in the database, 16,489 fulfilled inclusion criteria for the analysis. By day 60, 11,360 (68.9%) patients had been discharged from hospital, 4,192 patients (25.4%) had died in hospital, and 937 patients (5.7%) were still hospitalized. Median daily low protein intake was 0.49 g/kg [IQR 0.27–0.66], standard intake 0.99 g/kg [IQR 0.89– 1.09], and high intake 1.41 g/kg [IQR 1.29–1.60]. In comparison with an exclusively low protein diet, a late standard protein diet was associated with a lower hazard of in-hospital death: minimum 0.75 (95% CI 0.64, 0.87), and a higher hazard of live hospital discharge: maximum HR 1.98 (95% CI 1.72, 2.28). Results on hospital discharge, however, were qualitatively changed by a sensitivity analysis. There was no evidence that an early standard or a high protein intake during the acute phase was associated with a further improvement of outcome. Conclusions Provision of a standard protein intake during the late acute phase may improve outcome compared to an exclusively low protein diet. In unselected critically ill patients, clinical outcome may not be improved by a high protein intake during the acute phase. Study registration ID number ISRCTN17829198


2022 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Aleksandra Turek-Jakubowska ◽  
Janusz Dębski ◽  
Maciej Jakubowski ◽  
Ewa Szahidewicz-Krupska ◽  
Jakub Gawryś ◽  
...  

(1) Background: The aim of this dynamic-LC/MS-human-serum-proteomic-study was to identify potential proteins-candidates for biomarkers of acute ischemic stroke, their changes during acute phase of stroke and to define potential novel drug-targets. (2) Methods: A total of 32 patients (29–80 years) with acute ischemic stroke were enrolled to the study. The control group constituted 29 demographically-matched volunteers. Subjects with stroke presented clinical symptoms lasting no longer than 24 h, confirmed by neurological-examination and/or new cerebral ischemia visualized in the CT scans (computed tomography). The analysis of plasma proteome was performed using LC-MS (liquid chromatography–mass spectrometry). (3) Results: Ten proteins with significantly different serum concentrations between groups volunteers were: complement-factor-B, apolipoprotein-A-I, fibronectin, alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, heat-shock-cognate-71kDa protein/heat-shock-related-70kDa-protein-2, thymidine phosphorylase-2, cytoplasmic-tryptophan-tRNA-ligase, ficolin-2, beta-Ala-His-dipeptidase. (4) Conclusions: This is the first dynamic LC-MS study performed on a clinical model which differentiates serum proteome of patients in acute phase of ischemic stroke in time series and compares to control group. Listed proteins should be considered as risk factors, markers of ischemic stroke or potential therapeutic targets. Further clinical validation might define their exact role in differential diagnostics, monitoring the course of the ischemic stroke or specifying them as novel drug targets.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010176
Author(s):  
Srikanth Mairpady Shambat ◽  
Alejandro Gómez-Mejia ◽  
Tiziano A. Schweizer ◽  
Markus Huemer ◽  
Chun-Chi Chang ◽  
...  

COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery (rec)-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU and hospital stay in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Juan Moreno-Vedia ◽  
Roser Rosales ◽  
Enrique Ozcariz ◽  
Dídac Llop ◽  
Maribel Lahuerta ◽  
...  

High plasma triglyceride (TG) levels and chronic inflammation are important factors related to metabolic-associated fatty liver disease in patients at cardiovascular risk. Using nuclear magnetic resonance (1H-NMR), we aimed to study the triglyceride-rich lipoprotein (TRL) and acute-phase glycoprotein profiles of a cohort of patients with metabolic disease and their relationship with fatty liver. Plasma samples of 280 patients (type 2 diabetes, 81.1%; obesity, 63.3%; and metabolic syndrome, 91.8%) from the University Hospital Lipid Unit were collected for the measurement of small, medium and large TRL particle numbers and sizes and glycoprotein profiles (Glyc-A and Glyc-B) by 1H-NMR. Liver function parameters, including the fatty liver index (FLI) and fibrosis-4 (FIB-4) score, were assessed. Hepatic echography assessment was performed in 100 patients, and they were followed up for 10 years. TRL particle concentrations showed a strong positive association with Glyc-A and Glyc-B (ρ=0.895 and ρ=0.654, p&lt;0.001, respectively) and with the liver function-related proteins ALT ρ=0.293, p&lt;0.001), AST (ρ=0.318, p&lt;0.001) and GGT (ρ=0.284, p&lt;0.001). Likewise, TRL concentrations showed a positive association with FLI (ρ=0.425, p&lt;0.001) but not with FIB-4. During the follow-up period of 10 years, 18 new cases of steatosis were observed among 64 patients who were disease-free at baseline. Baseline TRL particle numbers and glycoprotein levels were associated with the new development of metabolic-associated fatty liver disease (MAFLD) (AUC=0.692, p=0.018 and AUC=0.669, p=0.037, respectively). Overall, our results indicated that TRL number and acute-phase glycoproteins measured by 1H-NMR could be potential biomarkers of the development of hepatic steatosis in patients at metabolic risk.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Małgorzata Pomorska-Mól ◽  
Kacper Libera ◽  
Magdalena Larska ◽  
Michał K. Krzysiak

Abstract Background This is the first report describing levels of APPs in European bison. Serum concentration of acute phase proteins (APPs) may be helpful to assess general health status in wildlife and potentially useful in selecting animals for elimination. Since there is a lack of literature data regarding concentration of APPs in European bisons, establishment of the reference values is also needed. Methods A total of 87 European bison from Polish populations were divided into two groups: (1) healthy: immobilized for transportation, placing a telemetry collar and routine diagnostic purposes; and (2) selectively culled due to the poor health condition. The serum concentration of haptoglobin, serum amyloid A and α1-acid-glycoprotein were determined using commercial quantitative ELISA assays. Since none of the variables met the normality assumptions, non-parametric Mann-Whitney U test was used for all comparisons. Statistical significance was set at p < 0.05. Statistical analyses were performed using Statistica 13.3 (Tibco, USA). Results The concentration of haptoglobin and serum amyloid A was significantly higher in animals culled (euthanised) due to the poor condition in respect to the clinically healthy European bison. The levels of α1-acid-glycoprotein did not show statistical difference between healthy and sick animals. Conclusions Correlation between APPs concertation and health status was proven, therefore the determination of selected APPs may be considered in future as auxiliary predictive tool in assessing European bison health condition.


Sign in / Sign up

Export Citation Format

Share Document