scholarly journals Effect of Preexisting Immunity to Salmonella on the Immune Response to Recombinant Salmonella enterica Serovar Typhimurium Expressing a Porphyromonas gingivalisHemagglutinin

2000 ◽  
Vol 68 (6) ◽  
pp. 3116-3120 ◽  
Author(s):  
James J. Kohler ◽  
Latha B. Pathangey ◽  
Sheila R. Gillespie ◽  
Thomas A. Brown

ABSTRACT Recombinant Salmonella strains expressing foreign heterologous genes have been extensively studied as live oral vaccine delivery vectors. We have investigated the mucosal and systemic immune responses following oral immunization with a recombinantSalmonella enterica serovar Typhimurium expressing the hemagglutinin HagB from Porphyromonas gingivalis, a suspected etiological agent of adult periodontal disease. We have previously shown a primary mucosal and systemic response following oral immunization with χ4072/pDMD1 and recall responses following boosting at 14 weeks after primary immunization. In this study, we examined the effects of earlier boosting as well as the effects of deliberately induced immunity to the Salmonella carrier strain on subsequent immune responses. Mice boosted at week 7 following immunization, a point which corresponded to the peak of the primary response, generally showed lower responses than those boosted at week 14. When mice were preimmunized with the Salmonella carrier alone and then immunized with the recombinant strain 7 or 14 weeks later, significant reductions were seen for serum immunoglobulin G (IgG) antibodies at week 14 and for salivary IgA at week 7. No reductions were seen in serum IgA or vaginal wash IgA antibodies. Mice appear to be refractory to boosting with orally administered salmonellae at 7 weeks. Deliberate immunization with the carrier strain did not appreciably affect recall responses at 14 weeks, with the exception of the serum IgG responses, nor did it affect colonization of the Peyer's patches.

2004 ◽  
Vol 72 (12) ◽  
pp. 7012-7021 ◽  
Author(s):  
Antonio DiGiandomenico ◽  
Jayasimha Rao ◽  
Joanna B. Goldberg

ABSTRACT Pseudomonas aeruginosa is a leading cause of nosocomial pneumonia. We compared the efficacies of oral and intraperitoneal (i.p.) vaccinations of BALB/c mice with attenuated Salmonella enterica serovar Typhimurium SL3261 expressing P. aeruginosa serogroup O11 O antigen to protect against P. aeruginosa infection in an acute fatal pneumonia model. Oral and i.p. vaccines elicited O11-specific serum immunoglobulin G (IgG) antibodies, but IgA was observed only after oral immunization. Challenge of orally vaccinated mice with an O11 strain (9882-80) at 6 and 12 times the 50% lethal dose showed increased survival in mice that received the vaccine compared to phosphate-buffered saline (PBS)- and vector-treated controls; no difference in survival was seen with a heterologous strain, 6294 (serogroup O6). In addition, significant protection against 9882-80 was not observed in i.p. vaccinated animals. Bronchoalveolar lavage fluid taken from immunized mice harbored O11-specific IgA and IgG in orally immunized mice but only modest levels of IgG in i.p. vaccinated mice. To correlate protection, opsonophagocytosis assays were performed with pooled sera from orally immunized animals. Efficient killing of five O11 clinical isolates was observed, while no killing was noted with 6294, indicating that the recombinant SL3261 oral vaccine induces an O11-specific reaction. We next determined the ability of orally vaccinated animals to clear bacteria from their lungs. Following P. aeruginosa challenge, the numbers of viable bacteria were significantly fewer in orally vaccinated animals than in PBS- and vector-treated controls. Our results suggest that oral immunization with recombinant SL3261 is efficacious in protection against pneumonia caused by P. aeruginosa.


2002 ◽  
Vol 70 (4) ◽  
pp. 1739-1749 ◽  
Author(s):  
Ho Young Kang ◽  
Jay Srinivasan ◽  
Roy Curtiss

ABSTRACT Attenuated Salmonella enterica serovar Typhimurium expressing recombinant antigens from other pathogens elicits primarily a Th1-type dominant immune response to both recombinant and Salmonella antigens. The immunogenicity and appropriate subcellular location of the recombinant antigen in the Salmonella vaccine strain may contribute to augmenting immune responses by facilitating adequate exposure of recombinant antigen to antigen-presenting cells for processing. To allow for secretion from gram-negative bacteria and overexpression of antigen, a DNA fragment encoding a highly antigenic α-helical region of PspA (pneumococcal surface protein A) was subcloned downstream from the β-lactamase signal sequence in the multicopy Asd+ pYA3493 vector to create pYA3494. pYA3493 was derived from a class of Asd+ vectors with reduced expression of Asd to minimize selective disadvantage and enhance immunization of expressed recombinant antigens. The S. enterica serovar Typhimurium vaccine strain was constructed by the introduction of deletion mutations Δcrp-28 and ΔasdA16. Approximately 50% of the recombinant PspA (rPspA) expressed in a Salmonella strain harboring pYA3494 was detected in the combined supernatant and periplasmic fractions of broth-grown recombinant Salmonella. After a single oral immunization in BALB/c mice with 109 CFU of the recombinant Salmonella vaccine strain carrying pYA3494, immunoglobulin G (IgG) antibody responses were stimulated to both the heterologous antigen rPspA and Salmonella lipopolysaccharide (LPS) and outer membrane proteins (OMPs). About half, and even more at later times after immunization, of the antibodies induced to rPspA were IgG1 (indicating a Th2-type response), whereas 60 to 70% of the antibodies to LPS and 80 to 90% of those to OMPs were IgG2a (indicating a Th1-type response). A sublethal infection with Streptococcus pneumoniae WU2 boosted PspA antibody levels and maintained IgG2a/IgG1 ratios similar to those seen before the challenge. Oral immunization with Salmonella-PspA vaccine protected 60% of immunized mice from death after intraperitoneal challenge with 50 times the 50% lethal dose of virulent S. pneumoniae WU2.


Sign in / Sign up

Export Citation Format

Share Document