serovar typhimurium
Recently Published Documents





Annie Ouyang ◽  
Kendall M. Gasner ◽  
Stephanie L. Neville ◽  
Christopher A. McDevitt ◽  
Elaine R. Frawley

Transition metal cations are required for the function of many proteins but can mediate toxicity when present in excess. Identifying transporters that facilitate metal ion export, the conditions under which they are expressed, and the role they play in bacterial physiology is an evolving area of interest for environmental and pathogenic organisms.

2022 ◽  
Yuan Yuan ◽  
Yara Seif ◽  
Kevin Rychel ◽  
Reo Yoo ◽  
Siddharth M Chauhan ◽  

Salmonella enterica Typhimurium is a serious pathogen that is involved in human nontyphoidal infections. Tackling Typhimurium infections is difficult due to the species' dynamic adaptation to its environment, which is dictated by a complex transcriptional regulatory network (TRN). While traditional biomolecular methods provide characterizations of specific regulators, it is laborious to construct the global TRN structure from this bottom-up approach. Here, we used a machine learning technique to understand the transcriptional signatures of S. enterica Typhimurium from the top down, as a whole and in individual strains. Furthermore, we conducted cross-strain comparison of 6 strains in serovar Typhimurium to investigate similarities and differences in their TRNs with pan-genomic analysis. By decomposing all the publicly available RNA-Seq data of Typhimurium with independent component analysis (ICA), we obtained over 400 independently modulated sets of genes, called iModulons. Through analysis of these iModulons, we 1) discover three transport iModulons linked to antibiotic resistance, 2) describe concerted responses to cationic antimicrobial peptides (CAMPs), 3) uncover evidence towards new regulons, and 4) identify two iModulons linked to bile responses in strain ST4/74. We extend this analysis across the pan-genome to show that strain-specific iModulons 5) reveal different genetic signatures in pathogenicity islands that explain phenotypes and 6) capture the activity of different phages in the studied strains. Using all high-quality publicly-available RNA-Seq data to date, we present a comprehensive, data-driven Typhimurium TRN. It is conceivable that with more high-quality datasets from more strains, the approach used in this study will continue to guide our investigation in understanding the pan-transcriptome of Typhimurium. Interactive dashboards for all gene modules in this project are available at to enable browsing for interested researchers.

2022 ◽  
Vol 12 ◽  
Giuseppina Mariano ◽  
Raquel Faba-Rodriguez ◽  
Soi Bui ◽  
Weilong Zhao ◽  
James Ross ◽  

The bacterial flagellum is a complex, self-assembling macromolecular machine that powers bacterial motility. It plays diverse roles in bacterial virulence, including aiding in colonization and dissemination during infection. The flagellum consists of a filamentous structure protruding from the cell, and of the basal body, a large assembly that spans the cell envelope. The basal body is comprised of over 20 different proteins forming several concentric ring structures, termed the M- S- L- P- and C-rings, respectively. In particular, the MS rings are formed by a single protein FliF, which consists of two trans-membrane helices anchoring it to the inner membrane and surrounding a large periplasmic domain. Assembly of the MS ring, through oligomerization of FliF, is one of the first steps of basal body assembly. Previous computational analysis had shown that the periplasmic region of FliF consists of three structurally similar domains, termed Ring-Building Motif (RBM)1, RBM2, and RBM3. The structure of the MS-ring has been reported recently, and unexpectedly shown that these three domains adopt different symmetries, with RBM3 having a 34-mer stoichiometry, while RBM2 adopts two distinct positions in the complex, including a 23-mer ring. This observation raises some important question on the assembly of the MS ring, and the formation of this symmetry mismatch within a single protein. In this study, we analyze the oligomerization of the individual RBM domains in isolation, in the Salmonella enterica serovar Typhimurium FliF ortholog. We demonstrate that the periplasmic domain of FliF assembles into the MS ring, in the absence of the trans-membrane helices. We also report that the RBM2 and RBM3 domains oligomerize into ring structures, but not RBM1. Intriguingly, we observe that a construct encompassing RBM1 and RBM2 is monomeric, suggesting that RBM1 interacts with RBM2, and inhibits its oligomerization. However, this inhibition is lifted by the addition of RBM3. Collectively, this data suggest a mechanism for the controlled assembly of the MS ring.

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 66
Osama Elhag ◽  
Yuanpu Zhang ◽  
Xiaopeng Xiao ◽  
Minmin Cai ◽  
Longyu Zheng ◽  

Black soldier fly (BSF) larvae are often exposed to organic waste which harbors abundant zoonotic pathogens. We investigated the ability of BSF larvae to inhibit the zoonotic pathogens naturally found in pig manure. The zoonotic pathogens populations were detected by using selective medium during the conversion. Results showed that the viability of the zoonotic pathogens in pig manure was significantly affected. After eight days of conversion, the Coliform populations were undetected, and Staphylococcus aureus and Salmonella spp. decreased significantly on the eighth day. Antimicrobial assays of the purified recombinant defensin-like peptide 4 (DLP4) showed that this peptide exhibits inhibitory activity against S. aureus, Salmonella enterica serovar typhimurium, and Escherichia coli in vitro. Bacteria BSF-CL and BSF-F were isolated from the larvae gut, and both inhibited the growth of S. aureus and E. coli, but Salmonella spp. was sensitive to the BSF-CL strain (but not to the BSF-F strain). The results from our experiments indicate that BSF larvae are capable of functionally inhibiting potential zoonotic pathogens in pig manure through a variety of mechanisms including antimicrobial peptides expression and the gut associate microorganisms. This study provides a theoretical basis for further study on the combined mechanism of BSF larvae immunity and its gut microbes against the zoonotic pathogens in pig manure.

2022 ◽  
William Santus ◽  
Amisha Rana ◽  
Jason Devlin ◽  
Kaitlyn Kiernan ◽  
Carol Jacob ◽  

Abstract The fungal gut microbiota (mycobiota) has been implicated in diseases that disturb gut homeostasis. However, little is known about functional relationships between bacteria and fungi in the gut during infectious colitis. We investigated the role of fungal metabolites during infection with the intestinal pathogen Salmonella enterica serovar Typhimurium. We found that in the gut lumen, both the mycobiota and fungi present in the diet can be a source of siderophores, small molecules that scavenge iron from the host. The ability to use fungal siderophores, such as ferrichrome and coprogen, conferred a competitive growth advantage to Salmonella strains expressing the fungal siderophore receptors FhuA or FhuE in vitro and in a mouse model. Our study highlights the role of inter-kingdom cross-feeding between fungi and Salmonella, and elucidates a new function for the gut mycobiota, revealing the importance of these under-studied members of the gut ecosystem during bacterial infection.

Cell Reports ◽  
2022 ◽  
Vol 38 (1) ◽  
pp. 110180
Catherine D. Shelton ◽  
Woongjae Yoo ◽  
Nicolas G. Shealy ◽  
Teresa P. Torres ◽  
Jacob K. Zieba ◽  

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Zhongyue Ren ◽  
Lingling Peng ◽  
Shufang Chen ◽  
Yi Pu ◽  
Huihui Lv ◽  

Salmonella Typhimurium is widely distributed in food. It can colonise the gastrointestinal tract after ingestion, causing lamina propria edema, inflammatory cell infiltration, and mucosal epithelial decomposition. A high-fat diet (HFD) can induce an inflammatory response, but whether HFD can increase the infection level of S. Typhimurium is unknown. We established a model of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311 ATCC 13311 infection in healthy adult mice with a maintenance diet (MD) or HFD to explore the effect of Lactiplantibacillus plantarum 1201 intervention on S. Typhimurium ATCC 13311 colonization and its protective effects on mice. HFD exacerbated the infection of S. Typhimurium ATCC 13311, while the intervention of L. plantarum 1201 effectively mitigated this process. L. plantarum 1201 can reduce the colonies of S. ATCC 13311 in the intestines and tissues; and reduce intestinal inflammation by down-regulating the level of TLR4/NF-κB pathway related proteins in serum and the expression of related inflammatory factors in the colon and jejunum. Since L. plantarum 1201 can inhibit the colonization of S. Typhimurium ATCC 13311 and relieve inflammation in HFD, current research may support the use of L. plantarum 1201 to prevent S. Typhimurium infection.

2021 ◽  
Qingjie Li ◽  
Lianping Wang ◽  
Shuang Liu ◽  
Jingwen Xu ◽  
Zeyu Song ◽  

Abstract AimsThis study was conducted to screen the type Ⅲ secretion system (T3SS) inhibitors of Salmonella enterica serovar Typhimurium (S. Typhimurium) from natural compounds. Through systemic analysis the pharmacological activity and action mechanism of candidate compounds in vivo and in vitro. Methods and resultsUsing an effector-β-lactamase fusion reporter system in S. Typhimurium, we discovered that quercitrin could block effector SipA translocation into eukaryotic host cell without affecting bacterial growth, and inhibit invasion or epithelial cells damage. Using β-galactosidase activity and Western blot assay, it was found that quercitrin significantly inhibits the expression of SPI-1 genes (hilA and sopA) and effectors (SipA and SipC). The animal experiment results indicated that quercitrin reduces mortality, pathological damages and colony colonization of infected mice. ConclusionsSmall-molecule inhibitor quercitrin directly inhibits the founction of T3SS in S. Typhimurium, and provids a potential alternative antimicrobial against Salmonella infection.Significance and impact of the studyNatural compounds have become valuable resources for antibacterials discovery due to their widely structures and biological activities. However, the potential targets and molecular action mechanisms of candidate compounds responsible for anti-infections remain elusive. The T3SS plays a crucial role in bacterial invasion and pathogenesis process in S. Typhimurium. Compared with traditional antibiotics, small molecular compounds can inhibit the T3SS of Salmonella and achieve the effect of anti-infection. They have less pressure on bacterial survival and are not easy to produce drug resistance. This provides strong evidence for development novel anti-virulence drugs against Salmonella infection.

2021 ◽  
Vol 12 ◽  
Kang Liang ◽  
Rui Zhang ◽  
Haiyan Luo ◽  
Jinlong Zhang ◽  
Zhenyuan Tian ◽  

The gram-negative facultative anaerobic bacteria Salmonella enterica serovar Typhimurium (hereafter S. Typhimurium) has always been considered as one candidate of anti-tumor agents or vectors for delivering drug molecules. In this study, we compared several widely studied S. Typhimurium strains in their anti-tumor properties aiming to screen out the best one for further optimization and use in cancer therapy. In terms of the motility, virulence and anti-tumor efficacy, the three strains 14028, SL1344, and UK-1 were similar and obviously better than LT-2, and UK-1 showed the best phenotypes among them. Therefore, the strain UK-1 (D) was selected for the following studies. Its auxotrophic mutant strain (D1) harboring ∆aroA and ∆purM mutations was further optimized through the modification of lipid A structure, generating a new strain named D2 with stronger immunostimulatory activity. Finally, the ∆asd derivative of D2 was utilized as one live vector to deliver anti-tumor molecules including the angiogenesis inhibitor endostatin and apoptosis inducer TRAIL and the therapeutic and toxic-side effects were evaluated in mouse models of colon carcinoma and melanoma. After intraperitoneal infection, engineered Salmonella bacteria equipped with endostatin and/or TRAIL significantly suppressed the tumor growth and prolonged survival of tumor-bearing mice compared to PBS or bacteria carrying the empty plasmid. Consistently, immunohistochemical studies confirmed the colonization of Salmonella bacteria and the expression of anti-tumor molecules inside tumor tissue, which were accompanied by the increase of cell apoptosis and suppression of tumor angiogenesis. These results demonstrated that the beneficial anti-tumor efficacy of attenuated S. Typhimurium bacteria could be improved through delivery of drug molecules with powerful anti-tumor activities.

Sign in / Sign up

Export Citation Format

Share Document