scholarly journals Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription.

1993 ◽  
Vol 175 (10) ◽  
pp. 2952-2960 ◽  
Author(s):  
M T de Souza ◽  
M M Lecadet ◽  
D Lereclus
2002 ◽  
Vol 184 (19) ◽  
pp. 5410-5417 ◽  
Author(s):  
Sharik R. Khan ◽  
Nirupama Banerjee-Bhatnagar

ABSTRACT HPr, the phosphocarrier protein of the bacterial phosphotransferase system, mediates catabolite repression of a number of operons in gram-positive bacteria. In order to participate in the regulatory process, HPr is activated by phosphorylation of a conserved serine-46 residue. To study the potential role of HPr in the regulation of Cry4A protoxin synthesis in Bacillus thuringiensis subsp. israelensis, we produced a catabolite repression-negative mutant by replacing the wild-type copy of the ptsH gene with a mutated copy in which the conserved serine residue of HPr was replaced with an alanine. HPr isolated from the mutant strain was not phosphorylated at Ser-45 by HPr kinase, but phosphorylation at His-14 was found to occur normally. The enzyme I and HPr kinase activities of the mutant were not affected. Analysis of the B. thuringiensis subsp. israelensis mutant harboring ptsH-S45A in the chromosome showed that cry4A expression was derepressed from the inhibitory effect of glucose. The mutant strain produced both cry4A and σ35 gene transcripts 4 h ahead of the parent strain, but there was no effect on σ28 synthesis. In wild-type B. thuringiensis subsp. israelensis cells, cry4A mRNA was observed from 12 h onwards, while in the mutant it appeared at 8 h and was produced for a longer period. The total amount of cry4A transcripts produced by the mutant was higher than by the parent strain. There was a 60 to 70% reduction in the sporulation efficiency of the mutant B. thuringiensis subsp. israelensis strain compared to the wild-type strain.


2017 ◽  
Vol 47 (2) ◽  
pp. 292-301
Author(s):  
L M Silva ◽  
M C Silva ◽  
S M F A Silva ◽  
R C Alves ◽  
H A A Siqueira ◽  
...  

2004 ◽  
Vol 70 (3) ◽  
pp. 1378-1384 ◽  
Author(s):  
Anna Estela ◽  
Baltasar Escriche ◽  
Juan Ferr�

ABSTRACT In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the “stacked” gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of 125I-labeled Cry1Ab protein (125I-Cry1Ab) and 125I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in competition experiments with 11 nonlabeled Cry proteins. The results indicate that Cry1Aa, Cry1Ab, and Cry1Ac competed for common binding sites. No other Cry proteins tested competed for either 125I-Cry1Ab or 125I-Cry1Ac binding, except Cry1Ja, which competed only at the highest concentrations used. Furthermore, BBMV from four H. armigera populations were also tested with 125I-Cry1Ac and Cry1Ab to check the influence of the insect population on the binding results. Finally, the inhibitory effect of selected sugars and lectins was also determined. 125I-Cry1Ac binding was strongly inhibited by N-acetylgalactosamine, sialic acid, and concanavalin A and moderately inhibited by soybean agglutinin. In contrast, 125I-Cry1Ab binding was only significantly inhibited by concanavalin A. These results show that Cry1Ac and Cry1Ab use different epitopes for binding to BBMV.


Sign in / Sign up

Export Citation Format

Share Document