scholarly journals Prospective Evaluation of Light Scatter Technology Paired with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Diagnosis of Urinary Tract Infections

2017 ◽  
Vol 55 (6) ◽  
pp. 1802-1811 ◽  
Author(s):  
Sandra Montgomery ◽  
Kiana Roman ◽  
Lan Ngyuen ◽  
Ana Maria Cardenas ◽  
James Knox ◽  
...  

ABSTRACTUrinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h.

2017 ◽  
Vol 55 (7) ◽  
pp. 2030-2034 ◽  
Author(s):  
Melissa R. Gitman ◽  
Lisa McTaggart ◽  
Joanna Spinato ◽  
Rahgavi Poopalarajah ◽  
Erin Lister ◽  
...  

ABSTRACT Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods.


2021 ◽  
Author(s):  
Anran Zhang ◽  
Qianqian Chen ◽  
Yulan Dong ◽  
Bin Tian ◽  
Jing Li ◽  
...  

Abstract Background Klebsiella pneumoniae infections, especially Carbapenem-resistant Klebsiella pneumoniae (CRKP), have become an “Urgent Threats” with high morbidity and mortality. Therefore, rapidly determining of the susceptibility and timely choosing an appropriate antibiotic were the important premises of the treatment of Klebsiella pneumoniae infections. The present study was first to explore the fitness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in quantitative rapid antimicrobial susceptibility testing (RAST) with optimal conditions. Methods Firstly, we optimized the methodology based on the formic acid extraction method. Taking broth micro-dilution method (BMD) as a reference method, we utilized 25-fold, 50-fold and 100-fold dilutions matching with appropriate incubation time to evaluate the consistency of minimum inhibition concentration (MIC) values derived from BMD and MALDI-TOF MS. Finally, the performances of optimal dilution and incubation time were verified through the reproducibility on different three days. Results Directly incubated in the EP tubes and skipped the washing step can not only simplify the procedure, but reduce the unnecessary loss of bacteria biomass to improve sensitivity. The optimal volumes of 70% formic acid/100% acetonitrile (FA/ACN) and supernatant on the target plate were 3 µL and 2 µL, respectively. Comparing the different combination, 25-fold dilution of the 0.5 McFarland suspension and 2hr incubation time resulted in best performance. The consistency between the MS-MIC and corresponding BMD-MIC values in CRKP and Carbapenem-susceptible Klebsiella pneumoniae (CSKP) strains accounted for 76.67% and 66.67%, respectively, which generated the substantial agreements between MS-MIC and BMD-MIC values for CRKP strains (Kappa=0.643) and the moderate agreements for CSKP strains (Kappa=0.476). Finally, the MALDI-TOF MS-based RAST showed a well repeatability. Conclusion Considerable potentials were demonstrated for universal and mechanism-indepent RAST by MALDI-TOF MS with optimal conditions, which strengthened its application in accelerating reporting time and clinical diagnosis.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Talent Theparee ◽  
Sanchita Das ◽  
Richard B. Thomson

ABSTRACT Technological advances have changed the practice of clinical microbiology. We implemented Bruker matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and BD Kiestra total laboratory automation (TLA) 4 and 3 years ago, respectively. To assess the impact of these new technologies, we compared turnaround times (TATs) for positive and negative urine cultures before and after implementation. In comparison I, TATs for 61,157 urine cultures were extracted for two periods corresponding to pre-TLA and post-TLA, both using MALDI-TOF MS for organism identification. In comparison II, time to organism identification (ID) and antimicrobial susceptibility (AST) reports were calculated for 5,402 positive culture reports representing four different periods: (i) manual plating and conventional biochemical identification (CONV), (ii) manual plating and MALDI-TOF MS identification (MALDI), (iii) MALDI-TOF MS identification and early phase implementation of TLA (TLA1), and (iv) MALDI-TOF MS identification and late phase implementation of TLA (TLA2). By the comparison I results, median pre- and post-TLA TATs to organism IDs (18.5 to 16.9 h), AST results (41.8 to 40.8 h), and preliminary results for negative cultures (17.7 to 13.6 h), including interquartile ranges for all comparisons, were significantly decreased post-TLA (P < 0.001). By the comparison II results, MALDI significantly improved TAT to organism ID compared to CONV (21.3 to 18 h). TLA further improved overall TAT to ID (18 to 16.5 h) and AST (42.3 to 40.7 h) results compared to MALDI (P < 0.001). In summary, TLA significantly improved TAT to organism ID, AST report, and preliminary negative results. MALDI-TOF MS significantly improved TAT for organism ID. Use of MALDI-TOF MS and TLA individually and together results in significant decreases in microbiology report TATs.


Author(s):  
Daniel Esquivel-Alvarado ◽  
Emilia Alfaro-Viquez ◽  
Christian G Krueger ◽  
Martha M Vestling ◽  
Jess D Reed

Abstract Background Cranberry proanthocyanidins (c-PAC) are oligomeric structures of flavan-3-ol units, which possess A-type interflavan bonds. c-PAC differs from other botanical sources because other PAC mostly have B-type interflavan bonds. Cranberry products used to alleviate and prevent urinary tract infections may suffer from adulteration, where c-PAC are replaced with less expensive botanical sources of PAC that contain B-type interflavan bonds. Objective Identifying the presence of A-type interflavan bonds in cranberry fruit and dietary supplements. Methods Thirty-five samples reported to contain A-type PAC (cranberry fruit and cranberry products) and 36 samples reported to contain B-type PAC (other botanical sources) were identified and differentiated using MALDI-TOF MS, deconvolution of overlapping isotope patterns, and principal component analysis (PCA). Results Our results show that both MALDI-TOF MS and deconvolution of overlapping isotope patterns were able to identify the presence of A-type interflavan bonds with a probability greater than 90% and a confidence of 95%. Deconvolution of MALDI-TOF MS spectra also determined the ratio of A-type to B-type interflavan bonds at each degree of polymerization in cranberry fruit and cranberry products, which is a distinguishing feature of c-PAC in comparison to other botanical sources of PAC. PCA shows clear differences based on the nature of the interflavan bonds. Conclusions MALDI-TOF MS, deconvolution of overlapping isotope patterns of MALDI-TOF MS spectra, and PCA allow the identification, estimation, and differentiation of A-type interflavan bonds in cranberry-based foods and dietary supplements among other botanical sources containing mostly B-type interflavan bonds.


2020 ◽  
Vol 9 (1) ◽  
pp. 82
Author(s):  
Issa Sy ◽  
Lena Margardt ◽  
Emmanuel O. Ngbede ◽  
Mohammed I. Adah ◽  
Saheed T. Yusuf ◽  
...  

Fascioliasis is a neglected trematode infection caused by Fasciola gigantica and Fasciola hepatica. Routine diagnosis of fascioliasis relies on macroscopic identification of adult worms in liver tissue of slaughtered animals, and microscopic detection of eggs in fecal samples of animals and humans. However, the diagnostic accuracy of morphological techniques and stool microscopy is low. Molecular diagnostics (e.g., polymerase chain reaction (PCR)) are more reliable, but these techniques are not routinely available in clinical microbiology laboratories. Matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a widely-used technique for identification of bacteria and fungi; yet, standardized protocols and databases for parasite detection need to be developed. The purpose of this study was to develop and validate an in-house database for Fasciola species-specific identification. To achieve this goal, the posterior parts of seven adult F. gigantica and one adult F. hepatica were processed and subjected to MALDI-TOF MS to create main spectra profiles (MSPs). Repeatability and reproducibility tests were performed to develop the database. A principal component analysis revealed significant differences between the spectra of F. gigantica and F. hepatica. Subsequently, 78 Fasciola samples were analyzed by MALDI-TOF MS using the previously developed database, out of which 98.7% (n = 74) and 100% (n = 3) were correctly identified as F. gigantica and F. hepatica, respectively. Log score values ranged between 1.73 and 2.23, thus indicating a reliable identification. We conclude that MALDI-TOF MS can provide species-specific identification of medically relevant liver flukes.


2014 ◽  
Vol 63 (9) ◽  
pp. 1143-1147 ◽  
Author(s):  
Katherine Woods ◽  
David Beighton ◽  
John L. Klein

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the ‘Streptococcus anginosus group’ (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide ‘gold standard’ identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius.


2017 ◽  
Vol 29 (5) ◽  
pp. 622-627 ◽  
Author(s):  
Rinosh J. Mani ◽  
Anil J. Thachil ◽  
Akhilesh Ramachandran

Accurate and timely identification of infectious etiologies is of great significance in veterinary microbiology, especially for critical diseases such as strangles, a highly contagious disease of horses caused by Streptococcus equi subsp. equi. We evaluated a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform for use in species- and subspecies-level identification of S. equi isolates from horses and compared it with an automated biochemical system. We used 25 clinical isolates each of S. equi subsp. equi and S. equi subsp. zooepidemicus. Using the MALDI-TOF MS platform, it was possible to correctly identify all 50 isolates to the species level. Unique mass peaks were identified in the bacterial peptide mass spectra generated by MALDI-TOF MS, which can be used for accurate subspecies-level identification of S. equi. Mass peaks (mass/charge, m/ z) 6,751.9 ± 1.4 (mean ± standard deviation) and 5,958.1 ± 1.3 were found to be unique to S. equi subsp. equi and S. equi subsp. zooepidemicus, respectively. The automated biochemical system correctly identified 47 of 50 of the isolates to the species level as S. equi, whereas at the subspecies level, 24 of 25 S. equi subsp. equi isolates and 22 of 25 S. equi subsp. zooepidemicus isolates were correctly identified. Our results indicate that MALDI-TOF MS can be used for accurate species- and subspecies-level identification of S. equi.


2017 ◽  
Vol 55 (5) ◽  
pp. 1437-1445 ◽  
Author(s):  
Maya Beganovic ◽  
Michael Costello ◽  
Sarah M. Wieczorkiewicz

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) decreases the time to organism identification and improves clinical and financial outcomes. The purpose of this study was to evaluate the impact of MALDI-TOF MS alone versus MALDI-TOF MS combined with real-time, pharmacist-driven, antimicrobial stewardship (AMS) intervention on patient outcomes. This single-center, pre-post, quasiexperimental study evaluated hospitalized patients with positive blood cultures identified via MALDI-TOF MS combined with prospective AMS intervention compared to a control cohort with MALDI-TOF MS identification without AMS intervention. AMS intervention included: real-time MALDI-TOF MS pharmacist notification and prospective AMS provider feedback. The primary outcome was the time to optimal therapy (TTOT). A total of 252 blood cultures, 126 in each group, were included in the final analysis. MALDI-TOF MS plus AMS intervention significantly reduced the overall TTOT (75.17 versus 43.06 h; P < 0.001), the Gram-positive contaminant TTOT (48.21 versus 11.75 h; P < 0.001), the Gram-negative infection (GNI) TTOT (71.83 versus 35.98 h; P < 0.001), and the overall hospital length of stay (LOS; 15.03 versus 9.02 days; P = 0.021). The TTOT for Gram-positive infection (GPI) was improved (64.04 versus 41.61 h; P = 0.082). For GPI, the hospital LOS (14.64 versus 10.31 days; P = 0.002) and length of antimicrobial therapy 24.30 versus 18.97 days; P = 0.018) were reduced. For GNI, the time to microbiologic clearance (51.13 versus 34.51 h; P < 0.001), the hospital LOS (15.40 versus 7.90 days; P = 0.027), and the intensive care unit LOS (5.55 versus 1.19 days; P = 0.035) were reduced. To achieve optimal outcomes, rapid identification with MALDI-TOF MS combined with real-time AMS intervention is more impactful than MALDI-TOF MS alone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keyi Yu ◽  
Zhenzhou Huang ◽  
Ying Li ◽  
Qingbo Fu ◽  
Lirong Lin ◽  
...  

Shewanella species are widely distributed in the aquatic environment and aquatic organisms. They are opportunistic human pathogens with increasing clinical infections reported in recent years. However, there is a lack of a rapid and accurate method to identify Shewanella species. We evaluated here matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of Shewanella. A peptide mass reference spectra (PMRS) database was constructed for the type strains of 36 Shewanella species. The main spectrum projection (MSP) cluster dendrogram showed that the type strains of Shewanella species can be effectively distinguished according to the different MS fingerprinting. The PMRS database was validated using 125 Shewanella test strains isolated from various sources and periods; 92.8% (n = 116) of the strains were correctly identified at the species level, compared with the results of multilocus sequence analysis (MLSA), which was previously shown to be a method for identifying Shewanella at the species level. The misidentified strains (n = 9) by MALDI-TOF MS involved five species of two groups, i.e., Shewanella algae–Shewanella chilikensis–Shewanella indica and Shewanella seohaensis–Shewanella xiamenensis. We then identified and defined species-specific biomarker peaks of the 36 species using the type strains and validated these selected biomarkers using 125 test strains. Our study demonstrated that MALDI-TOF MS was a reliable and powerful tool for the rapid identification of Shewanella strains at the species level.


2019 ◽  
Vol 36 (No. 6) ◽  
pp. 452-458 ◽  
Author(s):  
Štěpán Koudelka ◽  
Tereza Gelbíčová ◽  
Markéta Procházková ◽  
Renáta Karpíšková

The identification of Listeria species, lineages and serotypes remains a crucial issue not only in epidemic surveys, but also in monitoring of the diversity of bacteria in the food chain. The aim of this study was identification of L. monocytogenes strains at lineage and serotype level using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The performance of MALDI-TOF MS was tested to identify L. monocytogenes into two lineages (I and II) and four serotypes (1/2a, 1/2b, 1/2c and 4b) the most commonly found in humans and food. Total of 227 L. monocytogenes strains from different sources were subjected to the study. Some of strains (112) were used for main spectrum profile (MSP) library creation. Other strains of interest (115) were then correctly identified on the lineage level comparing with the library by MALDI-TOF MS analysis using Biotyper (90%) and ClinPro Tools (100%) software. The serotype identification with 55.7% (Biotyper) and 67.8% (ClinPro Tools) accuracy is rather a proof that under given conditions the method has not big potential to be used for serotyping. However, MALDI-TOF MS has a potential to identify lineages of L. monocytogenes of food and human origin.


Sign in / Sign up

Export Citation Format

Share Document