scholarly journals Immunization with a Vaccine Combining Herpes Simplex Virus 2 (HSV-2) Glycoprotein C (gC) and gD Subunits Improves the Protection of Dorsal Root Ganglia in Mice and Reduces the Frequency of Recurrent Vaginal Shedding of HSV-2 DNA in Guinea Pigs Compared to Immunization with gD Alone

2011 ◽  
Vol 85 (20) ◽  
pp. 10472-10486 ◽  
Author(s):  
S. Awasthi ◽  
J. M. Lubinski ◽  
C. E. Shaw ◽  
S. M. Barrett ◽  
M. Cai ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 258
Author(s):  
Jonathan D. Joyce ◽  
Anant K. Patel ◽  
Brandie Murphy ◽  
Daniel J.J. Carr ◽  
Edward Gershburg ◽  
...  

Treatment to ameliorate the symptoms of infection with herpes simplex virus 2 (HSV-2) and to suppress reactivation has been available for decades. However, a safe and effective preventative or therapeutic vaccine has eluded development. Two novel live-attenuated HSV-2 vaccine candidates (RVx201 and RVx202) have been tested preclinically for safety. Hartley guinea pigs were inoculated vaginally (n = 3) or intradermally (n = 16) with either vaccine candidate (2 × 107 PFU) and observed for disease for 28 days. All animals survived to study end without developing HSV-2-associated disease. Neither vaccine candidate established latency in dorsal root or sacral sympathetic ganglia, as determined by viral DNA quantification, LAT expression, or explant reactivation. Infectious virus was shed in vaginal secretions for three days following vaginal inoculation with RVx202, but not RVx201, although active or latent HSV-2 was not detected at study end. In contrast, guinea pigs inoculated with wild-type HSV-2 MS (2 × 105 PFU) vaginally (n = 5) or intradermally (n = 16) developed acute disease, neurological signs, shed virus in vaginal secretions, experienced periodic recurrences throughout the study period, and had latent HSV-2 in their dorsal root and sacral sympathetic ganglia at study end. Both vaccine candidates generated neutralizing antibody. Taken together, these findings suggest that these novel vaccine candidates are safe in guinea pigs and should be tested for efficacy as preventative and/or therapeutic anti-HSV-2 vaccines.


2000 ◽  
Vol 74 (8) ◽  
pp. 3613-3622 ◽  
Author(s):  
Herve Berthomme ◽  
James Lokensgard ◽  
Li Yang ◽  
Todd Margolis ◽  
Lawrence T. Feldman

ABSTRACT Herpes simplex virus type 1 (HSV-1) latent infection in vivo is characterized by the constitutive expression of the latency-associated transcripts (LAT), which originate from the LAT promoter (LAP). In an attempt to determine the functional parts of LAP, we previously demonstrated that viruses harboring a DNA fragment 3′ of the LAT promoter itself were able to maintain detectable promoter expression throughout latency whereas viruses not containing this element could not (J. R. Lokensgard, H. Berthomme, and L. T. Feldman, J. Virol. 71:6714–6719, 1997). This element was therefore called a long-term expression element (LTE). To further study the role of the LTE, we constructed plasmids containing a DNA fragment encompassing the LTE inserted into a synthetic intron between the reporterlacZ gene and either the LAT or the HSV-1 thymidine kinase promoter. Transient-expression experiments with both neuronal and nonneuronal cell lines showed that the LTE locus has an enhancer activity that does not activate the cytomegalovirus enhancer but does activate the promoters such as the LAT promoter and the thymidine kinase promoter. The enhancement of these two promoters occurs in both neuronal and nonneuronal cell lines. Recombinant viruses containing enhancer constructs were constructed, and these demonstrated that the enhancer functioned when present in the context of the viral DNA, both for in vitro infections of cells in culture and for in vivo infections of neurons in mouse dorsal root ganglia. In the infections of mouse dorsal root ganglia, there was a very high level of promoter activity in neurons infected with viruses bearing the LAT promoter-enhancer, but this decreased after the first 2 or 3 weeks. By 18 days postinfection, neurons harboring latent virus without the enhancer showed no β-galactosidase (β-gal) staining whereas those harboring latent virus containing the enhancer continued to show β-gal staining for long periods, extending to at least 6 months postinfection, the longest time examined.


2005 ◽  
Vol 79 (1) ◽  
pp. 410-418 ◽  
Author(s):  
Yo Hoshino ◽  
Sarat K. Dalai ◽  
Kening Wang ◽  
Lesley Pesnicak ◽  
Tsz Y. Lau ◽  
...  

ABSTRACT Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8+-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-2
Author(s):  
K.L. Gaishauser ◽  
C.G. Burkhart

Herpes Simplex Virus (HSV) is a double-stranded virus that affects the skin and mucous membranes. There has been a long-standing dogma stating that the virus remains dormant and is reactivated from the dorsal root ganglia. However, more recent studies have established that there is a secondary mode of viral reactivation from the epidermis itself. These two distinct reactivation patterns help explain why prophylactic antivirals do not consistently prevent herpes outbreaks.


Sign in / Sign up

Export Citation Format

Share Document