scholarly journals A Host Factor Involved in Hypovirus Symptom Expression in the Chestnut Blight Fungus, Cryphonectria parasitica

2007 ◽  
Vol 82 (2) ◽  
pp. 740-754 ◽  
Author(s):  
M. Iqbal Faruk ◽  
Ana Eusebio-Cope ◽  
Nobuhiro Suzuki

ABSTRACT The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg2+ transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.

2002 ◽  
Vol 15 (8) ◽  
pp. 780-789 ◽  
Author(s):  
Atsuko Sasaki ◽  
Mari Onoue ◽  
Satoko Kanematsu ◽  
Kouich Suzaki ◽  
Masaki Miyanishi ◽  
...  

Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C. parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V. ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field.


2019 ◽  
Vol 32 (3) ◽  
pp. 286-295 ◽  
Author(s):  
Myeongjin Jo ◽  
Kum-Kang So ◽  
Yo-Han Ko ◽  
Jeesun Chun ◽  
Jung-Mi Kim ◽  
...  

We identified a protein spot showing downregulation in the presence of Cryphonectria hypovirus 1 and tannic acid supplementation as a septin subunit with the highest homology to the Aspergillus nidulans aspA gene, an ortholog of the Saccharomyces cerevisiae Cdc11 gene. To analyze the functional role of this septin component (CpSep1), we constructed its null mutant and obtained a total of eight CpSep1-null mutants from 137 transformants. All CpSep1-null mutants showed retarded growth, with fewer aerial mycelia and intense pigmentation on plates of potato dextrose agar supplemented with L-methionine and biotin. When the marginal hyphae were examined, hyperbranching was observed in contrast to the wild type. The inhibition of colonial growth was partially recovered when the CpSep1-null mutants were cultured in the presence of the osmostabilizing sorbitol. Conidia production of the CpSep1-null mutants was significantly increased by at least 10-fold more. Interestingly, the conidial morphology of the CpSep1-null mutants changed to circular in contrast to the typical rod-shaped spores of the wild type, indicating a role of septin in the spore morphology of Cryphonectria parasitica. However, no differences in the germination process were observed. Virulence assays using excised chestnut bark, stromal pustule formation on chestnut stems, and apple inoculation indicated that the CpSep1 gene is important in pathogenicity.


1998 ◽  
Vol 11 (11) ◽  
pp. 1130-1135 ◽  
Author(s):  
Shaojian Gao ◽  
Donald L. Nuss

Targeted disruption of cpg-1, a gene encoding the G protein Giα subunit, CPG-1, in the chestnut blight fungus, Cryphonectria parasitica, results in reduced mycelial growth, reduced orange pigmentation, loss of virulence, loss of asexual sporulation, and female infertility. We report the development of a complementation system for cpg-1 null mutants and its use to evaluate the in vivo consequences of mutating conserved putative CPG-1 myristoylation (G2) and palmitoylation (C3) sites. Independent mutations of the two putative acylation sites differentially altered complex fungal biological processes, including virulence, and modified CPG-1 membrane association. Results of combined Northern (RNA) and Western (immunoblot) analysis also indicated a role for lipid modification in post-transcriptional regulation of CPG-1 accumulation.


2008 ◽  
Vol 82 (13) ◽  
pp. 6369-6378 ◽  
Author(s):  
Fuyou Deng ◽  
Donald L. Nuss

ABSTRACT The prototypic hypovirus CHV1-EP713, responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, encodes two papain-like proteases, p29 and p48. Protein p29 has been shown to be dispensable for hypovirus RNA replication and to act as a suppressor of RNA silencing. Here we describe a role for p48 in hypovirus RNA propagation. CHV1-EP713 infectious cDNA clones in which the p48 coding region was deleted, Δp48, were unable to establish infection in C. parasitica when introduced as a DNA form by transformation or as a coding strand transcript by electroporation. However, the Δp48 mutant virus RNA was rescued when p48 was provided in trans. Surprisingly, the Δp48 mutant viruses retained replication competence in the apparent absence of p48 following transmission to wild-type C. parasitica and successive subculturing. The replicating Δp48 mutant virus was reduced in RNA accumulation by 60% both in the absence and presence of p48 provided in trans and was transmitted through asexual spores (conidia) at a rate 3 to 8% of that for full-length CHV1-EP713. Complementary analysis of strains expressing p48 or containing the replicating Δp48 mutant virus showed that like p29, p48 contributes to virus-mediated suppression of host pigmentation and conidiation, although to a lesser extent, and is dispensable for hypovirus-mediated hypovirulence. The combined results suggest that papain-like protease p48 plays an essential role in the initiation but not the maintenance of virus RNA propagation and also contributes to the regulation of viral RNA accumulation and vertical transmission.


2001 ◽  
Vol 265 (4) ◽  
pp. 730-738 ◽  
Author(s):  
D. Linder-Basso ◽  
R. Foglia ◽  
P. Zhu ◽  
B.I. Hillman

2000 ◽  
Vol 24 (4) ◽  
pp. 196-201 ◽  
Author(s):  
Seth J. Diamond ◽  
Robert H. Giles ◽  
Roy L. Kirkpatrick ◽  
Gary J. Griffin

Abstract We estimated hard mast production of a Southern Appalachian forest for two 10 yr intervals: one before and one, 35 yr after, the chestnut blight fungus (Cryphonectria parasitica) (Murr.) Barr, had killed all mature chestnut trees. The basal area of hard mast-producing trees in the postblight forest was 28% less than in the preblight forest. The estimate of hard mast output was 34% less after the chestnut blight. Postblight production was less than preblight production for 8 of 10 yr. During 5 of these years, postblight production was only 5-27% of preblight production. Annual preblight mast production was relatively stable, whereas annual postblight production fluctuated substantially. Our findings suggest that the loss of mature chestnuts (Castanea dentata) markedly reduced the Southern Appalachian forest's carrying capacity for certain wildlife species. South. J. Appl. For 24(4):196-201.


Sign in / Sign up

Export Citation Format

Share Document