fungal pathogens
Recently Published Documents


TOTAL DOCUMENTS

3604
(FIVE YEARS 1798)

H-INDEX

104
(FIVE YEARS 26)

2022 ◽  
Vol 8 (1) ◽  
pp. 83
Author(s):  
Rui Wang ◽  
Clement K. M. Tsui ◽  
Chongjuan You

Chrysomyxa rusts are fungal pathogens widely distributed in the Northern hemisphere, causing spruce needle and cone rust diseases, and they are responsible for significant economic losses in China. Taxonomic delimitation and precise species identification are difficult within this genus because some characters often overlap in several species. Adequate species delimitation, enhanced by the use of DNA-based methodologies, will help to establish well-supported species boundaries and enable the identification of cryptic species. Here, we explore the cryptic species diversity in the rust genus Chrysomyxa from China. Species delimitation analyses are conducted using a distance-based method (ABGD) and three tree-based methods (GMYC, bPTP, and mPTP) based on combined LSU and ITS sequences of over 60 specimens. Although there is some incongruence among species delimitation methods, two new species and three putative cryptic species are identified. The key to 20 Chrysomyxa species distributed in China is presented. These results suggest that a significant level of undiscovered cryptic diversity is likely to be found in Chrysomyxa from China. Future studies should consider multiple analytical methods when dealing with multi-locus datasets.


2022 ◽  
Vol 2 ◽  
Author(s):  
Sefinew Tilahun ◽  
Marye Alemu ◽  
Mesfin Tsegaw ◽  
Nega Berhane

Ginger diseases caused by fungal pathogens have become one of the most serious problems causing reduced production around the world. It has also caused a major problem among farmers in different parts of Ethiopia resulting in a huge decline in rhizome yield. However, the exact causative agents of this disease have not been identified in the state. Although there are few studies related to pathogenic fungus identification, molecular level identification of fungal pathogen was not done in the area. Therefore, this study was undertaken to isolate and characterized the fungal causative agent of ginger disease from the diseased plant and the soil samples collected around the diseased plant from Chilga district, Gondar, Ethiopia. Samples from infected ginger plants and the soil around the infected plant were collected. Culturing and purification of isolates were made using Potato Dextrose Agar supplemented with antibacterial agent chloramphenicol. The morphological characterization was done by structural identification of the isolates under the microscope using lactophenol cotton blue stains. Isolated fungi were cultured and molecular identification was done using an internal transcribed spacer (ITS) of ribosomal DNA (rDNA). A total of 15 fungal morphotypes including 11 Aspergillus spp. (73.3%), 2 Penicillium spp. (13.3%), and single uncultured fungus clone S23 were isolated from the samples representing all the plant organs and the soil. Aspergillus spp. (73.3%) was the most common and seems to be the major causative agent. To the best of our knowledge, this is the first report of ginger pathogenic fungi in Ethiopia identified using ITS rDNA molecular techniques. This study will lay foundation for the development of management strategies for fungal diseases infecting ginger.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Meike Hüdig ◽  
Natalie Laibach ◽  
Anke-Christiane Hein

The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a semi-quantitative text analysis approach on political, economic, and scientific opinion papers to disentangle and extract expectations towards the application of NGT-based plants. Using the sustainable development goals (SDG) of the 2030 agenda as categories, we identify contributions to food security or adaptation to climatic changes as the most frequently mentioned expectations, accompanied by the notion of sustainable agriculture and food systems. We then link SDG with relevant plant traits and review existing research and commercial field trials for genome-edited crop plants. For a detailed analysis we pick as representative traits drought tolerance and resistance against fungal pathogens. Diverse genetic setscrews for both traits have been identified, modified, and tested under laboratory conditions, although there are only a few in the field. All in all, NGT-plants that can withstand more than one stressor or different environments are not documented in advanced development states. We further conclude that developing new plants with modified traits will not be sufficient to reach food security or adaption to climatic changes in a short time frame. Further scientific development of sustainable agricultural systems will need to play an important role to tackle SDG challenges, as well.


2022 ◽  
Author(s):  
Supriya Joshi ◽  
Prerna Bhardwaj ◽  
Afroz Alam

Postharvest losses from fungal pathogens to essential fruits and vegetables are enormous and alarming. Orthodox synthetic fungicides are being used as a regular practice to restrict these losses. However, now by knowing the hazards of these chemical-based fungicides, the situation demands alternative green technology. Consequently, many angiosperms plant extracts have been evaluated for their antifungal nature and achieved substantial success. However, the second most prevalent flora on land, i.e. bryophytes, have been scarcely used and somewhat remain neglected besides their remarkable thallus organization, water relations and antimicrobial potential. For postharvest fungus control, these bryophytes, the first land plants' extracts to be researched and promoted due to concerns about drug resistance, nephrotoxicity and biomagnification related to current synthetic fungicides. Since these amphibious plants have their unique protective mechanism against fungal or bacterial attacks due to their unique phytochemistry, therefore have great potential to be used as eco-friendly fungicides. Considering these factors, this article seeks to direct the attention of interested researchers toward the relatively accessible but vast underutilised bryo-diversity to investigate their remarkable potential as postharvest antifungal agents first in laboratories and then on a commercial scale in the future.


Author(s):  
Jianjun Wang ◽  
Xuekai Wei ◽  
Malik Kamran ◽  
Taixiang Chen ◽  
James F. White ◽  
...  
Keyword(s):  

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Andong Gong ◽  
Gaozhan Wang ◽  
Yake Sun ◽  
Mengge Song ◽  
Cheelo Dimuna ◽  
...  

Abstract Background Soil fertility decline and pathogen infection are severe issues for crop production all over the world. Microbes as inherent factors in soil were effective in alleviating fertility decrease, promoting plant growth and controlling plant pathogens et al. Thus, screening microbes with fertility improving and pathogen controlling properties is of great importance to humans. Results Bacteria Pt-3 isolated from tea rhizosphere showed multiple functions in solubilizing insoluble phosphate, promoting plant growth, producing abundant volatile organic compounds (VOCs) and inhibiting the growth of important fungal pathogens in vitro. According to the 16S rRNA phylogenetic and biochemical analysis, Pt-3 was identified to be Serratia marcescens. The solubilizing zone of Pt-3 in the medium of lecithin and Ca3(PO4)2 was 2.1 cm and 1.8 cm respectively. In liquid medium and soil, the concentration of soluble phosphorus reached 343.9 mg.L− 1, and 3.98 mg.kg− 1, and significantly promoted the growth of maize seedling, respectively. Moreover, Pt-3 produced abundant volatiles and greatly inhibited the growth of seven important phytopathogens. The inhibition rate ranged from 75.51 to 100% respectively. Solid phase micro-extraction coupled with gas chromatography tandem mass spectrometry proved that the antifungal volatile was dimethyl disulfide. Dimethyl disulfide can inhibit the germination of Aspergillus flavus, and severely destroy the cell structures under scanning electron microscopy. Conclusions S. marcescens Pt-3 with multiple functions will provide novel agent for the production of bioactive fertilizer with P-solubilizing and fungal pathogens control activity.


Author(s):  
Yi Sun ◽  
Lihua Tan ◽  
Zhaoqian Yao ◽  
Lujuan Gao ◽  
Ji Yang ◽  
...  

Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy.


2022 ◽  
Author(s):  
Vinutha K. Balachandra ◽  
Santanu K. Ghosh
Keyword(s):  

Author(s):  
Ed Dixon ◽  
Kimberly Leonberger ◽  
Desiree Szarka ◽  
Bernadette Amsden ◽  
Henry S Smith ◽  
...  

Upon reintroduction of hemp in 2014 and legalization in 2018, labeled pesticides have remained limited. Further, consumer demand has aimed the market toward organic or chemical-free production systems. In efforts to manage diseases and pests in fields and greenhouses, producers turn toward biological and biorational formulations. Efficacy of these fungicides against common aerial diseases of hemp is largely unpublished. Challenges of efficacy testing, however, further delay or discourage research. In this study, we evaluated screening methods against some common biological products. The aim was to test a screening model in order to examine products against fungal pathogens and to identify demonstrable differences under controlled conditions. Thus, in this study, we prescreen 11 biological and biorational fungicides against four common fungal leaf and flower pathogens using three bioassays. Confirmation that the major modes of action for these products have measurable activity against major pathogens of hemp serves as a first step toward more complex field studies.


Sign in / Sign up

Export Citation Format

Share Document