symptom modulation
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Manish Kumar ◽  
Fauzia Zarreen ◽  
Supriya Chakraborty

Abstract Background Alphasatellites are small coding DNA satellites frequently associated with a begomovirus/betasatellite complex, where they are known to modulate virulence and symptom development. Two distinct alphasatellites, namely, Cotton leaf curl Multan alphasatellite (CLCuMuA), and Gossypium darwinii symptomless alphasatellite (GDarSLA) associated with Cotton leaf curl Multan virus-India (CLCuMuV-IN) and Ludwigia leaf distortion betasatellite (LuLDB) were found to be associated with yellow mosaic disease of hollyhock (Alcea rosea) plants. In this study, we show that alphasatellites CLCuMuA and GDarSLA attenuate and delay symptom development in Nicotiana benthamiana. The presence of either alphasatellites reduce the accumulation of the helper virus CLCuMuV-IN. However, the levels of the associated betasatellite, LuLDB, remains unchanged. These results suggest that the alphasatellites could contribute to the host defence and understanding their role in disease development is important for developing resistance strategies. Methods Tandem repeat constructs of two distinct alphasatellites, namely, CLCuMuA and GDarSLA associated with CLCuMuV-IN and LuLDB were generated. N. benthamiana plants were co-agroinoculated with CLCuMuV and its associated alphasatellites and betasatellite molecules and samples were collected at 7, 14 and 21 days post inoculation (dpi). The viral DNA molecules were quantified in N. benthamiana plants by qPCR. The sequences were analysed using the MEGA-X tool, and a phylogenetic tree was generated. Genetic diversity among the CLCuMuA and GDarSLA was analysed using the DnaSP tool. Results We observed a reduction in symptom severity and accumulation of helper virus in the presence of two alphasatellites isolated from naturally infected hollyhock plants. However, no reduction in the accumulation of betasatellite was observed. The phylogenetic and genetic variability study revealed the evolutionary dynamics of these distinct alphasatellites , which could explain the role of hollyhock-associated alphasatellites in plants. Conclusions This study provides evidence that alphasatellites have a role in symptom modulation and suppress helper virus replication without any discernible effect on the replication of the associated betasatellite.


2016 ◽  
Vol 106 (6) ◽  
pp. 653-662 ◽  
Author(s):  
Kenji Kubota ◽  
James C. K. Ng

RNA silencing functions as an antivirus defense strategy in plants, one that plant viruses counter by producing viral suppressors of RNA silencing (VSRs). VSRs have been identified in three members of the genus Crinivirus but they do not all share identical suppression mechanisms. Here, we used Agrobacterium co-infiltration assays to investigate the suppressor activity of proteins encoded by Lettuce chlorosis virus (LCV). Of 7 LCV proteins (1b, P23, HSP70 homolog, P60, CP, CPm, and P27) tested for the suppression of silencing of green fluorescent protein (GFP) expression in wild-type Nicotiana benthamiana plants, only P23 suppressed the onset of local silencing. Small-interfering (si)RNA accumulation was reduced in leaves co-infiltrated with P23, suggesting that P23 inhibited the accumulation or enhanced the degradation of siRNA. P23 also inhibited the cell-to-cell and systemic movement of RNA silencing in GFP-expressing transgenic N. benthamiana plants. Expression of P23 via agroinfiltration of N. benthamiana leaves induced local necrosis that increased in severity at elevated temperatures, a novelty given that a direct temperature effect on necrosis severity has not been reported for the other crinivirus VSRs. These results further affirm the sophistication of crinivirus VSRs in mediating the evasion of host’s antiviral defenses and in symptom modulation.


2007 ◽  
Vol 82 (2) ◽  
pp. 740-754 ◽  
Author(s):  
M. Iqbal Faruk ◽  
Ana Eusebio-Cope ◽  
Nobuhiro Suzuki

ABSTRACT The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg2+ transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.


2000 ◽  
Vol 74 (14) ◽  
pp. 6528-6537 ◽  
Author(s):  
Jianlong Wang ◽  
Anne E. Simon

ABSTRACT Many plant RNA viruses are associated with one or more subviral RNAs. Two subviral RNAs, satellite RNA C (satC) and defective interfering RNA G (diG) intensify the symptoms of their helper, turnip crinkle virus (TCV). However, when the coat protein (CP) of TCV was replaced with that of the related Cardamine chlorotic fleck virus (CCFV), both subviral RNAs attenuated symptoms of the hybrid virus TCV-CPCCFV. In contrast, when the translation initiation codon of the TCV CP was altered to ACG and reduced levels of CP were synthesized, satC attenuated symptoms while diG neither intensified nor attenuated symptoms. The determinants for this differential symptom modulation were previously localized to the 3′-terminal 100 bases of the subviral RNAs, which contain six positional differences (Q. Kong, J.-W. Oh, C. D. Carpenter, and A. E. Simon, Virology 238:478–485, 1997). In the current study, we have determined that certain sequences within the 3′-terminal stem-loop structures of satC and diG, which also serve as promoters for complementary strand synthesis, are critical for symptom modulation. Furthermore, the ability to attenuate symptoms was correlated with weakened binding of TCV CP to the hairpin structure.


Virology ◽  
1997 ◽  
Vol 238 (2) ◽  
pp. 478-485 ◽  
Author(s):  
Qingzhong Kong ◽  
Jong-Won Oh ◽  
Clifford D Carpenter ◽  
Anne E Simon

Sign in / Sign up

Export Citation Format

Share Document