scholarly journals The carboxy-terminal 41 amino acids of herpes simplex virus type 1 glycoprotein B are not essential for production of infectious virus particles.

1988 ◽  
Vol 62 (11) ◽  
pp. 4403-4406 ◽  
Author(s):  
V Huff ◽  
W Cai ◽  
J C Glorioso ◽  
M Levine
2009 ◽  
Vol 83 (17) ◽  
pp. 8938-8945 ◽  
Author(s):  
Frauke Beilstein ◽  
Martin R. Higgs ◽  
Nigel D. Stow

ABSTRACT The UL33 protein of herpes simplex virus type 1 (HSV-1) is thought to be a component of the terminase complex that mediates the cleavage and packaging of viral DNA. In this study we describe the generation and characterization of a series of 15 UL33 mutants containing insertions of five amino acids located randomly throughout the 130-residue protein. Of these mutants, seven were unable to complement the growth of the UL33-null virus dlUL33 in transient assays and also failed to support the cleavage and packaging of replicated amplicon DNA into capsids. The insertions in these mutants were clustered between residues 51 and 74 and between 104 and 116, within the most highly conserved regions of the protein. The ability of the mutants to interact with the UL28 component of the terminase was assessed in immunoprecipitation and immunofluorescence assays. All four mutants with insertions between amino acids 51 and 74 were impaired in this interaction, whereas two of the three mutants in the second region (with insertions at positions 111 and 116) were not affected. These data indicate that the ability of UL33 to interact with UL28 is probably necessary, but not sufficient, to support viral growth and DNA packaging.


2003 ◽  
Vol 77 (18) ◽  
pp. 10154-10161 ◽  
Author(s):  
Guofeng Cheng ◽  
Kui Yang ◽  
Bin He

ABSTRACT The γ134.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the γ134.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2α. Here we show that the γ134.5 protein is capable of mediating eIF-2α dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the γ134.5 protein has no effect on eIF-2α dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the γ134.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the γ134.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2α dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the γ134.5 null mutant in infected cells. Restoration of the wild-type γ134.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2α dephosphorylation mediated by the γ134.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the γ134.5 protein contribute to efficient viral infection.


2012 ◽  
Vol 93 (3) ◽  
pp. 624-634 ◽  
Author(s):  
Sandra Loret ◽  
Roger Lippé

Herpes simplex virus type 1 (HSV-1) capsids assemble in the nucleus but acquire their teguments from various cellular compartments. Unfortunately, little is known about their exact arrangement and when they coat the newly produced capsids. The complexity of the virions is further highlighted by our recent proteomics analysis that detected the presence of several novel or controversial components in extracellular HSV-1 virions. The present study probes the localization and linkage to the virus particles of some of these incorporated proteins. We confirm the recently reported tight association of infected cell polypeptide (ICP)0 with the capsid and show that this property extends to ICP4. We also confirm our proteomics data and show biochemically that UL7 and UL23 are indeed mature virion tegument components that, unlike ICP0 and ICP4, are salt-extractable. Interestingly, treatment with N-ethylmaleimide, which covalently modifies reduced cysteines, strongly prevented the release of UL7 and UL23 by salts, but did not perturb the interactions of ICP0 and ICP4 with the virus particles. This hitheir at distinct biochemical properties of the virion constituents and the selective implication of reduced cysteines in their organization and dynamics. Finally, the data revealed, by two independent means, the presence of ICP0 and ICP4 on intranuclear capsids, consistent with the possibility that they may at least partially be recruited to the virus particles early on. These findings add significantly to our understanding of HSV-1 virion assembly and to the debate about the incorporation of ICP0 and ICP4 in virus particles.


1997 ◽  
Vol 60 (10) ◽  
pp. 1259-1261 ◽  
Author(s):  
D. BARDELL

Droplets of saliva containing herpes simplex virus type 1 were placed on the skin of tomatoes and the upper surface of lettuce leaves. There was no loss of virus infectivity titer at refrigerator temperature (2°C) at any time examined up to 1 h, the longest period tested. At room temperature (22 to 24°C) there was a 2-log drop in titer between 30 and 60 min, but some infectious virus was still present at 1 h. The virus-containing saliva remained in a liquid state at 2°C. At 22 to 24°C the droplets became dry at approximately 50 min. Implications of the findings are discussed.


2007 ◽  
Vol 81 (14) ◽  
pp. 7380-7387 ◽  
Author(s):  
Colin M. Crump ◽  
Catherine Yates ◽  
Tony Minson

ABSTRACT The assembly and egress of herpesviruses are complex processes that require the budding of viral nucleocapsids into the lumen of cytoplasmic compartments to form mature infectious virus. This envelopment stage shares many characteristics with the formation of luminal vesicles in multivesicular endosomes. Through expression of dominant-negative Vps4, an enzyme that is essential for the formation of luminal vesicles in multivesicular endosomes, we now show that Vps4 function is required for the cytoplasmic envelopment of herpes simplex virus type 1. This is the first example of a large enveloped DNA virus engaging the multivesicular endosome sorting machinery to enable infectious virus production.


2008 ◽  
Vol 82 (13) ◽  
pp. 6778-6781 ◽  
Author(s):  
Jamie B. Huffman ◽  
William W. Newcomb ◽  
Jay C. Brown ◽  
Fred L. Homa

ABSTRACT The herpes simplex virus type 1 (HSV-1) portal is composed of a dodecamer of UL6 protein molecules whose incorporation into the capsid is mediated by interaction with the HSV-1 UL26.5 scaffold protein. Previous results with an in vitro capsid assembly assay demonstrated that nine amino acids (amino acids 143 to 151) of the UL26.5 protein are required for its interaction with UL6 and for incorporation of the portal complex into capsids. In the present study an HSV-1 mutant, bvFH411, was isolated and contained a deletion that removed the codons for UL26.5 amino acids 143 to 150. The mutant virus failed to produce infectious virus in noncomplementing cells, and only B capsids that contained only minor amounts of portal protein were made. These data corroborate our previous in vitro studies and demonstrate that amino acids 143 to 150 of UL26.5 are required for the formation of portal-containing HSV-1 capsids.


Sign in / Sign up

Export Citation Format

Share Document