scholarly journals Status of Marek's disease virus in established lymphoma cell lines: herpesvirus integration is common.

1993 ◽  
Vol 67 (1) ◽  
pp. 82-92 ◽  
Author(s):  
H J Delecluse ◽  
W Hammerschmidt
2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Yaoyao Zhang ◽  
Na Tang ◽  
Jun Luo ◽  
Man Teng ◽  
Katy Moffat ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs with profound regulatory roles in many areas of biology, including cancer. MicroRNA 155 (miR-155), one of the extensively studied multifunctional miRNAs, is important in several human malignancies such as diffuse large B cell lymphoma and chronic lymphocytic leukemia. Moreover, miR-155 orthologs KSHV-miR-K12-11 and MDV-miR-M4, encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV) and Marek’s disease virus (MDV), respectively, are also involved in oncogenesis. In MDV-induced T-cell lymphomas and in lymphoblastoid cell lines derived from them, MDV-miR-M4 is highly expressed. Using excellent disease models of infection in natural avian hosts, we showed previously that MDV-miR-M4 is critical for the induction of T-cell lymphomas as mutant viruses with precise deletions were significantly compromised in their oncogenicity. However, those studies did not elucidate whether continued expression of MDV-miR-M4 is essential for maintaining the transformed phenotype of tumor cells. Here using an in situ CRISPR/Cas9 editing approach, we deleted MDV-miR-M4 from the MDV-induced lymphoma-derived lymphoblastoid cell line MDCC-HP8. Precise deletion of MDV-miR-M4 was confirmed by PCR, sequencing, quantitative reverse transcription-PCR (qRT-PCR), and functional analysis. Continued proliferation of the MDV-miR-M4-deleted cell lines demonstrated that MDV-miR-M4 expression is not essential for maintaining the transformed phenotype, despite its initial critical role in the induction of lymphomas. Ability to examine the direct role of oncogenic miRNAs in situ in tumor cell lines is valuable in delineating distinct determinants and pathways associated with the induction or maintenance of transformation in cancer cells and will also contribute significantly to gaining further insights into the biology of oncogenic herpesviruses. IMPORTANCE Marek’s disease virus (MDV) is an alphaherpesvirus associated with Marek’s disease (MD), a highly contagious neoplastic disease of chickens. MD serves as an excellent model for studying virus-induced T-cell lymphomas in the natural chicken hosts. Among the limited set of genes associated with MD oncogenicity, MDV-miR-M4, a highly expressed viral ortholog of the oncogenic miR-155, has received extensive attention due to its direct role in the induction of lymphomas. Using a targeted CRISPR-Cas9-based gene editing approach in MDV-transformed lymphoblastoid cell lines, we show that MDV-miR-M4, despite its critical role in the induction of tumors, is not essential for maintaining the transformed phenotype and continuous proliferation. As far as we know, this was the first study in which precise editing of an oncogenic miRNA was carried out in situ in MD lymphoma-derived cell lines to demonstrate that it is not essential in maintaining the transformed phenotype.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 391 ◽  
Author(s):  
Yaoyao Zhang ◽  
Jun Luo ◽  
Na Tang ◽  
Man Teng ◽  
Vishwanatha R.A.P. Reddy ◽  
...  

Marek’s disease virus (MDV), a lymphotropic α-herpesvirus associated with T-cell lymphomas in chickens, is an excellent model for herpesvirus biology and virus-induced oncogenesis. Marek’s disease (MD) is also one of the cancers against which a vaccine was first used. In the lymphomas and lymphoblastoid cell lines (LCLs) derived from them, MDV establishes latent infection with limited gene expression. Although LCLs are valuable for interrogating viral and host gene functions, molecular determinants associated with the maintenance of MDV latency and lytic switch remain largely unknown, mainly due to the lack of tools for in situ manipulation of the genomes in these cell lines. Here we describe the first application of CRISPR/Cas9 editing approach for precise editing of the viral gene phosphoprotein 38 (pp38), a biomarker for latent/lytic switch in MDV-transformed LCLs MDCC-MSB-1 (Marek’s disease cell line MSB-1) and MDCC-HP8. Contradictory to the previous reports suggesting that pp38 is involved in the maintenance of transformation of LCL MSB-1 cells, we show that pp38-deleted cells proliferated at a significant higher rate, suggesting that pp38 is dispensable for the transformed state of these cell lines. Application of CRISPR/Cas9-based gene editing of MDV-transformed cell lines in situ opens up further opportunities towards a better understanding of MDV pathogenesis and virus-host interactions.


1999 ◽  
Vol 73 (2) ◽  
pp. 1362-1373 ◽  
Author(s):  
Mark S. Parcells ◽  
Robert L. Dienglewicz ◽  
Amy S. Anderson ◽  
Robin W. Morgan

ABSTRACT Marek’s disease is a herpesvirus (Marek’s disease virus [MDV])-induced pathology of chickens characterized by paralysis and the rapid appearance of T-cell lymphomas. Lymphoblastoid cell lines (LBCLs) derived from MDV-induced tumors have served as models of MDV latency and transformation. We have recently reported the construction of mutant MDVs having a deletion (M. S. Parcells et al., J. Virol. 69:7888–7898, 1995) and an insertion (A. S. Anderson et al., J. Virol. 72:2548–2553, 1998) within the unique short region of the virus genome. These mutant MDVs retained oncogenicity, and LBCLs have been established from the mutant-induced tumors. We report the characterization of these cell lines with respect to (i) virus structure within and reactivated from the cell lines, (ii) surface antigen expression, (iii) kinetics of MDV and marker gene induction, (iv) localization and colocalization of induced MDV antigens and β-galactosidase (β-Gal), and (v) methylation status of the region of lacZ insertion in recombinant- and non-recombinant-derived cell lines. Our results indicate that (i) recombinant-derived cell lines contain no parental virus, (ii) the established cell lines are predominantly CD4+ CD8−, (iii) the percentage of Lac-expressing cells is low (1 to 3%) but increases dramatically upon 5′-iododeoxyuridine (IUdR) treatment, (iv) lacZ expression is induced with the same kinetics as several MDV lytic-phase genes (pp38, US1, gB, gI, and US10), and (v) the regulation oflacZ expression is not mediated by methylation. Furthermore, the MDV-encoded oncoprotein, Meq, could be detected in cells expressing β-Gal and various lytic antigens but did not appear to be induced by IUdR treatment. Our results indicate that regulation of the lacZ marker gene can serve as sensitive measure of virus lytic-phase induction and the reactivation from latency.


Sign in / Sign up

Export Citation Format

Share Document