scholarly journals Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity.

1994 ◽  
Vol 68 (3) ◽  
pp. 1714-1720 ◽  
Author(s):  
X Y Ma ◽  
P Sova ◽  
W Chao ◽  
D J Volsky
2006 ◽  
Vol 80 (23) ◽  
pp. 11710-11722 ◽  
Author(s):  
Fei Guo ◽  
Shan Cen ◽  
Meijuan Niu ◽  
Jenan Saadatmand ◽  
Lawrence Kleiman

ABSTRACT Cells are categorized as being permissive or nonpermissive according to their ability to produce infectious human immunodeficiency virus type 1 (HIV-1) lacking the viral protein Vif. Nonpermissive cells express the human cytidine deaminase APOBEC3G (hA3G), and Vif has been shown to bind to APOBEC3G and facilitate its degradation. Vif-negative HIV-1 virions produced in nonpermissive cells incorporate hA3G and have a severely reduced ability to produce viral DNA in newly infected cells. While it has been proposed that the reduction in DNA production is due to hA3G-facilitated deamination of cytidine, followed by DNA degradation, we provide evidence here that a decrease in the synthesis of the DNA by reverse transcriptase may account for a significant part of this reduction. During the infection of cells with Vif-negative HIV-1 produced from 293T cells transiently expressing hA3G, much of the inhibition of early (≥50% reduction) and late (≥95% reduction) viral DNA production, and of viral infectivity (≥95% reduction), can occur independently of DNA deamination. The inhibition of the production of early minus-sense strong stop DNA is also correlated with a similar inability of tRNA3 Lys to prime reverse transcription. A similar reduction in tRNA3 Lys priming and viral infectivity is also seen in the naturally nonpermissive cell H9, albeit at significantly lower levels of hA3G expression.


2008 ◽  
Vol 82 (21) ◽  
pp. 10811-10819 ◽  
Author(s):  
Massimo Pizzato ◽  
Elena Popova ◽  
Heinrich G. Göttlinger

ABSTRACT Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.


Sign in / Sign up

Export Citation Format

Share Document