protein maturation
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 16)

H-INDEX

38
(FIVE YEARS 2)

Author(s):  
Pietro Renna ◽  
Cristian Ripoli ◽  
Onur Dagliyan ◽  
Francesco Pastore ◽  
Marco Rinaudo ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11972
Author(s):  
Arianna Venturini ◽  
Anna Borrelli ◽  
Ilaria Musante ◽  
Paolo Scudieri ◽  
Valeria Capurro ◽  
...  

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiří Koubek ◽  
Jaro Schmitt ◽  
Carla Veronica Galmozzi ◽  
Günter Kramer

Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.


2020 ◽  
Vol 11 (11) ◽  
pp. 6137
Author(s):  
Varun K. A. Sreenivasan ◽  
Matthew S. Graus ◽  
Rashmi R. Pillai ◽  
Zhengmin Yang ◽  
Jesse Goyette ◽  
...  

Author(s):  
Yanxin Liu ◽  
Ming Sun ◽  
Alexander G. Myasnikov ◽  
Daniel Elnatan ◽  
Nicolas Delaeter ◽  
...  

AbstractHsp90 is a ubiquitous molecular chaperone that facilitates the folding and maturation of hundreds of cellular “client” proteins. The ATP-driven client maturation process is regulated by a large number of co-chaperones. Among them, Aha1 is the most potent activator of Hsp90 ATPase activity and thus dramatically affects Hsp90’s client proteins. To understand the Aha1 activation mechanism, we determined full-length Hsp90:Aha1 structures in six different states by cryo-electron microscopy, including nucleotide-free semi-closed, nucleotide-bound pre-hydrolysis, and semi-hydrolyzed states. Our structures demonstrate that the two Aha1 domains can each interact with Hsp90 in two different modes, uncovering a complex multistep activation mechanism. The results show that Aha1 accelerates the chemical step of ATP hydrolysis like a conventional enzyme, but most unusually, catalyzes the rate-limiting large-scale conformational changes of Hsp90 fundamentally required for ATP hydrolysis. Our work provides a structural framework to guide small molecule development targeting this critical modulator of client protein maturation.


ACS Sensors ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 1500-1500
Author(s):  
Boqun Liu ◽  
Sara N. Mavrova ◽  
Jonas van den Berg ◽  
Sebastian K. Kristensen ◽  
Luca Mantovanelli ◽  
...  

2020 ◽  
Vol 295 (21) ◽  
pp. 7362-7375 ◽  
Author(s):  
Trevor Croft ◽  
Padmaja Venkatakrishnan ◽  
Christol James Theoga Raj ◽  
Benjamin Groth ◽  
Timothy Cater ◽  
...  

NAD+ is an essential metabolite participating in cellular biochemical processes and signaling. The regulation and interconnection among multiple NAD+ biosynthesis pathways are incompletely understood. Yeast (Saccharomyces cerevisiae) cells lacking the N-terminal (Nt) protein acetyltransferase complex NatB exhibit an approximate 50% reduction in NAD+ levels and aberrant metabolism of NAD+ precursors, changes that are associated with a decrease in nicotinamide mononucleotide adenylyltransferase (Nmnat) protein levels. Here, we show that this decrease in NAD+ and Nmnat protein levels is specifically due to the absence of Nt-acetylation of Nmnat (Nma1 and Nma2) proteins and not of other NatB substrates. Nt-acetylation critically regulates protein degradation by the N-end rule pathways, suggesting that the absence of Nt-acetylation may alter Nmnat protein stability. Interestingly, the rate of protein turnover (t½) of non-Nt-acetylated Nmnats did not significantly differ from those of Nt-acetylated Nmnats. Accordingly, deletion or depletion of the N-end rule pathway ubiquitin E3 ligases in NatB mutants did not restore NAD+ levels. Next, we examined whether the status of Nt-acetylation would affect the translation of Nmnats, finding that the absence of Nt-acetylation does not significantly alter the polysome formation rate on Nmnat mRNAs. However, we observed that NatB mutants have significantly reduced Nmnat protein maturation. Our findings indicate that the reduced Nmnat levels in NatB mutants are mainly due to inefficient protein maturation. Nmnat activities are essential for all NAD+ biosynthesis routes, and understanding the regulation of Nmnat protein homeostasis may improve our understanding of the molecular basis and regulation of NAD+ metabolism.


2020 ◽  
Vol 295 (10) ◽  
pp. 3029-3039 ◽  
Author(s):  
Simon J. Mayr ◽  
Juliane Röper ◽  
Guenter Schwarz

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I–III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.


Sign in / Sign up

Export Citation Format

Share Document