scholarly journals The influenza virus NS1 protein is a poly(A)-binding protein that inhibits nuclear export of mRNAs containing poly(A).

1994 ◽  
Vol 68 (4) ◽  
pp. 2425-2432 ◽  
Author(s):  
Y Qiu ◽  
R M Krug
2019 ◽  
Vol 4 (10) ◽  
pp. 1671-1679 ◽  
Author(s):  
Ke Zhang ◽  
Yihu Xie ◽  
Raquel Muñoz-Moreno ◽  
Juan Wang ◽  
Liang Zhang ◽  
...  

2011 ◽  
Vol 92 (7) ◽  
pp. 1627-1634 ◽  
Author(s):  
Katja Bier ◽  
Ashley York ◽  
Ervin Fodor

The influenza virus RNA polymerase synthesizes three types of RNA: genomic vRNA, anti-genomic cRNA and mRNA. Both vRNA and cRNA are bound by the viral RNA polymerase and nucleoprotein to form ribonucleoprotein complexes. Viral mRNAs are also proposed to be bound by the RNA polymerase to prevent their endonucleolytic cleavage, regulate the splicing of M1 mRNA, and facilitate translation. Here, we used standard immunoprecipitation, biochemical purification and RNA immunoprecipitation assays to investigate the association of viral and host factors with viral mRNA. We found that viral mRNA associates with the viral non-structural protein 1 (NS1), cellular poly(A)-binding protein 1 (PABP1), the 20 kDa subunit NCBP1 of the nuclear cap-binding complex (CBC), the RNA and export factor-binding protein REF/Aly and the translation initiation factor eIF4E. However, our data suggest that the RNA polymerase might not form part of the viral messenger ribonucleoprotein (mRNP) complex. We propose a model in which viral mRNAs, by associating with cellular cap-binding proteins, follow the pathways normally used by cellular mRNAs for splicing, nuclear export and translation.


2014 ◽  
Vol 95 (2) ◽  
pp. 337-349 ◽  
Author(s):  
Irina Kuznetsova ◽  
Anna-Polina Shurygina ◽  
Brigitte Wolf ◽  
Markus Wolschek ◽  
Florian Enzmann ◽  
...  

The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.


2000 ◽  
Vol 74 (13) ◽  
pp. 6203-6206 ◽  
Author(s):  
Michael Bergmann ◽  
Adolfo Garcia-Sastre ◽  
Elena Carnero ◽  
Hubert Pehamberger ◽  
Klaus Wolff ◽  
...  

ABSTRACT The availability of an influenza virus NS1 gene knockout virus (delNS1 virus) allowed us to establish the significance of the biological relationship between the influenza virus NS1 protein and double-stranded-RNA-activated protein kinase (PKR) in the life cycle and pathogenicity of influenza virus. Our results show that the lack of functional PKR permits the delNS1 virus to replicate in otherwise nonpermissive hosts, suggesting that the major function of the influenza virus NS1 protein is to counteract or prevent the PKR-mediated antiviral response.


1997 ◽  
Vol 17 (4) ◽  
pp. 2158-2165 ◽  
Author(s):  
A F Ross ◽  
Y Oleynikov ◽  
E H Kislauskis ◽  
K L Taneja ◽  
R H Singer

Localization of beta-actin mRNA to the leading edge of fibroblasts requires the presence of conserved elements in the 3' untranslated region of the mRNA, including a 54-nucleotide element which has been termed the "zipcode" (E. Kislauskis, X. Zhu, and R. H. Singer, J. Cell Biol. 127:441-451, 1994). In order to identify proteins which bind to the zipcode and possibly play a role in localization, we performed band-shift mobility assays, UV cross-linking, and affinity purification experiments. A protein of 68 kDa was identified which binds to the proximal (to the coding region) half of the zipcode with high specificity (ZBP-1). Microsequencing provided unique peptide sequences of approximately 15 residues each. Degenerate primers corresponding to the codons derived from the peptides were synthesized and used for PCR amplification. Screening of a chicken cDNA library resulted in isolation of several clones providing a DNA sequence encoding a 67.7-kDa protein with regions homologous to several RNA-binding proteins, such as hnRNP E1 and E2, and with consensus mRNA recognition motif with RNP1 and 2 motifs and a putative REV-like nuclear export signal. Antipeptide antibodies were raised in rabbits which bound to ZBP-1 and coimmunoprecipitated proteins of 120 and 25 kDa. The 120-kDa protein was also obtained by affinity purification with the RNA zipcode sequence, along with a 53-kDa protein, but the 25-kDa protein appeared only in immunoprecipitations. Mutation of one of the conserved sequences within the zipcode, an ACACCC element in its proximal half, greatly reduced its protein binding and localization properties. These data suggest that the 68-kDa ZBP-1 we have isolated and cloned is an RNA-binding protein that functions within a complex to localize beta-actin mRNA.


2009 ◽  
Vol 6 (1) ◽  
pp. 218 ◽  
Author(s):  
Lixia Zhao ◽  
Long Xu ◽  
Xiaowei Zhou ◽  
Qingyu Zhu ◽  
Zhixin Yang ◽  
...  

FEBS Letters ◽  
2004 ◽  
Vol 565 (1-3) ◽  
pp. 106-110 ◽  
Author(s):  
Keita Miyoshi ◽  
Chiharu Shirai ◽  
Chihiro Horigome ◽  
Kazuhiko Takenami ◽  
Junko Kawasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document