scholarly journals Cellular cap-binding proteins associate with influenza virus mRNAs

2011 ◽  
Vol 92 (7) ◽  
pp. 1627-1634 ◽  
Author(s):  
Katja Bier ◽  
Ashley York ◽  
Ervin Fodor

The influenza virus RNA polymerase synthesizes three types of RNA: genomic vRNA, anti-genomic cRNA and mRNA. Both vRNA and cRNA are bound by the viral RNA polymerase and nucleoprotein to form ribonucleoprotein complexes. Viral mRNAs are also proposed to be bound by the RNA polymerase to prevent their endonucleolytic cleavage, regulate the splicing of M1 mRNA, and facilitate translation. Here, we used standard immunoprecipitation, biochemical purification and RNA immunoprecipitation assays to investigate the association of viral and host factors with viral mRNA. We found that viral mRNA associates with the viral non-structural protein 1 (NS1), cellular poly(A)-binding protein 1 (PABP1), the 20 kDa subunit NCBP1 of the nuclear cap-binding complex (CBC), the RNA and export factor-binding protein REF/Aly and the translation initiation factor eIF4E. However, our data suggest that the RNA polymerase might not form part of the viral messenger ribonucleoprotein (mRNP) complex. We propose a model in which viral mRNAs, by associating with cellular cap-binding proteins, follow the pathways normally used by cellular mRNAs for splicing, nuclear export and translation.

2008 ◽  
Vol 82 (22) ◽  
pp. 11283-11293 ◽  
Author(s):  
Maya Harb ◽  
Michelle M. Becker ◽  
Damien Vitour ◽  
Carolina H. Baron ◽  
Patrice Vende ◽  
...  

ABSTRACT Rotavirus nonstructural protein NSP3 interacts specifically with the 3′ end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.


2005 ◽  
Vol 86 (5) ◽  
pp. 1239-1249 ◽  
Author(s):  
Pierre Fechter ◽  
George G. Brownlee

Most cellular and eukaryotic viral mRNAs have a cap structure at their 5′ end that is critical for efficient translation. Cap structures also aid in mRNA transport from nucleus to cytoplasm and, in addition, protect the mRNAs from degradation by 5′ exonucleases. Cap function is mediated by cap-binding proteins that play a key role in translational control. Recent structural studies on the cellular cap-binding complex, the eukaryotic translation initiation factor 4E and the vaccinia virus protein 39, suggest that these three evolutionary unrelated cap-binding proteins have evolved a common cap-binding pocket by convergent evolution. In this pocket the positively charged N7-methylated guanine ring of the cap structure is stacked between two aromatic amino acids. In this review, the similarities and differences in cap binding by these three different cap-binding proteins are discussed. A comparison with new functional data for another viral cap-binding protein – the polymerase basic protein (PB2) of influenza virus – suggests that a similar cap-binding mechanism has also evolved in influenza virus.


2003 ◽  
Vol 84 (12) ◽  
pp. 3263-3274 ◽  
Author(s):  
Idoia Burgui ◽  
Tomás Aragón ◽  
Juan Ortín ◽  
Amelia Nieto

It has previously been shown that influenza virus NS1 protein enhances the translation of viral but not cellular mRNAs. This enhancement occurs by increasing the rate of translation initiation and requires the 5′UTR sequence, common to all viral mRNAs. In agreement with these findings, we show here that viral mRNAs, but not cellular mRNAs, are associated with NS1 during virus infection. We have previously reported that NS1 interacts with the translation initiation factor eIF4GI, next to its poly(A)-binding protein 1 (PABP1)-interacting domain and that NS1 and eIF4GI are associated in influenza virus-infected cells. Here we show that NS1, although capable of binding poly(A), does not compete with PABP1 for association with eIF4GI and, furthermore, that NS1 and PABP1 interact both in vivo and in vitro in an RNA-independent manner. The interaction maps between residues 365 and 535 in PABP1 and between residues 1 and 81 in NS1. These mapping studies, together with those previously reported for NS1–eIF4GI and PABP1–eIF4GI interactions, imply that the binding of all three proteins would be compatible. Collectively, these and previously published data suggest that NS1 interactions with eIF4GI and PABP1, as well as with viral mRNAs, could promote the specific recruitment of 43S complexes to the viral mRNAs.


1986 ◽  
Vol 6 (5) ◽  
pp. 1741-1750
Author(s):  
M G Katze ◽  
B M Detjen ◽  
B Safer ◽  
R M Krug

Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).


2006 ◽  
Vol 81 (5) ◽  
pp. 2221-2230 ◽  
Author(s):  
Alan G. Goodman ◽  
Jennifer A. Smith ◽  
Siddharth Balachandran ◽  
Olivia Perwitasari ◽  
Sean C. Proll ◽  
...  

ABSTRACT We previously hypothesized that efficient translation of influenza virus mRNA requires the recruitment of P58IPK, the cellular inhibitor of PKR, an interferon-induced kinase that targets the eukaryotic translation initiation factor eIF2α. P58IPK also inhibits PERK, an eIF2α kinase that is localized in the endoplasmic reticulum (ER) and induced during ER stress. The ability of P58IPK to interact with and inhibit multiple eIF2α kinases suggests it is a critical regulator of both cellular and viral mRNA translation. In this study, we sought to definitively define the role of P58IPK during viral infection of mammalian cells. Using mouse embryo fibroblasts from P58IPK−/− mice, we demonstrated that the absence of P58IPK led to an increase in eIF2α phosphorylation and decreased influenza virus mRNA translation. The absence of P58IPK also resulted in decreased vesicular stomatitis virus replication but enhanced reovirus yields. In cells lacking the P58IPK target, PKR, the trends were reversed—eIF2α phosphorylation was decreased, and influenza virus mRNA translation was increased. Although P58IPK also inhibits PERK, the presence or absence of this kinase had little effect on influenza virus mRNA translation, despite reduced levels of eIF2α phosphorylation in cells lacking PERK. Finally, we showed that influenza virus protein synthesis and viral mRNA levels decrease in cells that express a constitutively active, nonphosphorylatable eIF2α. Taken together, our results support a model in which P58IPK regulates influenza virus mRNA translation and infection through a PKR-mediated mechanism which is independent of PERK.


1986 ◽  
Vol 6 (5) ◽  
pp. 1741-1750 ◽  
Author(s):  
M G Katze ◽  
B M Detjen ◽  
B Safer ◽  
R M Krug

Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).


2004 ◽  
Vol 279 (31) ◽  
pp. 32401-32406 ◽  
Author(s):  
Diane E. Alexander ◽  
David J. Kaczorowski ◽  
Amy J. Jackson-Fisher ◽  
Drew M. Lowery ◽  
Sara J. Zanton ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Ahmed Salem ◽  
Carter J. Wilson ◽  
Benjamin S. Rutledge ◽  
Allison Dilliott ◽  
Sali Farhan ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document