scholarly journals Envelopment of varicella-zoster virus: targeting of viral glycoproteins to the trans-Golgi network.

1995 ◽  
Vol 69 (12) ◽  
pp. 7951-7959 ◽  
Author(s):  
Z Zhu ◽  
M D Gershon ◽  
Y Hao ◽  
R T Ambron ◽  
C A Gabel ◽  
...  
1994 ◽  
Vol 68 (10) ◽  
pp. 6372-6390 ◽  
Author(s):  
A A Gershon ◽  
D L Sherman ◽  
Z Zhu ◽  
C A Gabel ◽  
R T Ambron ◽  
...  

2017 ◽  
Vol 32 (5) ◽  
pp. 387-395 ◽  
Author(s):  
Wei Wang ◽  
Wenkun Fu ◽  
Dequan Pan ◽  
Linli Cai ◽  
Jianghui Ye ◽  
...  

2005 ◽  
Vol 79 (2) ◽  
pp. 997-1007 ◽  
Author(s):  
Lucie Maresova ◽  
Tracy Jo Pasieka ◽  
Elizabeth Homan ◽  
Erick Gerday ◽  
Charles Grose

ABSTRACT The cytoplasmic tails of all three major varicella-zoster virus (VZV) glycoproteins, gE, gH, and gB, harbor functional tyrosine-based endocytosis motifs that mediate internalization. The aim of the present study was to examine whether endocytosis from the plasma membrane is a cellular route by which VZV glycoproteins are delivered to the final envelopment compartment. In this study, we demonstrated that internalization of the glycoproteins occurred in the first 24 h postinfection but was reduced later in infection. Using surface biotinylation of VZV-infected cells followed by a glutathione cleavage assay, we showed that endocytosis was independent of antibody binding to gE, gH, and gB. Subsequently, with this assay, we demonstrated that biotinylated gE, gH, and gB retrieved from the cell surface were incorporated into nascent virus particles isolated after density gradient sedimentation. To confirm and extend this finding, we repeated the above sedimentation step and specifically detected envelopes decorated with Streptavidin-conjugated gold beads on a majority of complete virions through examination by transmission electron microscopy. In addition, a gE-gI complex and a gE-gH complex were found on the virions. Therefore, the above studies established that VZV subsumed a postendocytosis trafficking pathway as one mechanism by which to deliver viral glycoproteins to the site of virion assembly in the cytoplasm. Furthermore, since a recombinant VZV genome lacking only endocytosis-competent gE cannot replicate, these results supported the conclusion that the endocytosis-envelopment pathway is an essential component of the VZV life cycle.


2000 ◽  
Vol 74 (20) ◽  
pp. 9421-9430 ◽  
Author(s):  
Thomas C. Heineman ◽  
Nancy Krudwig ◽  
Susan L. Hall

ABSTRACT Normal herpesvirus assembly and egress depend on the correct intracellular localization of viral glycoproteins. While several post-Golgi transport motifs have been characterized within the cytoplasmic domains of various viral glycoproteins, few specific endoplasmic reticulum (ER)-to-Golgi transport signals have been described. We report the identification of two regions within the 125-amino-acid cytoplasmic domain of Varicella-Zoster virus gB that are required for its ER-to-Golgi transport. Native gB or gB containing deletions and specific point mutations in its cytoplasmic domain was expressed in mammalian cells. ER-to-Golgi transport of gB was assessed by indirect immunofluorescence and by the acquisition of Golgi-dependent posttranslational modifications. These studies revealed that the ER-to-Golgi transport of gB requires a nine-amino-acid region (YMTLVSAAE) within its cytoplasmic domain. Mutations of individual amino acids within this region markedly impaired the transport of gB from the ER to the Golgi, indicating that this domain functions by a sequence-dependent mechanism. Deletion of the C-terminal 17 amino acids of the gB cytoplasmic domain was also shown to impair the transport of gB from the ER to the Golgi. However, internal mutations within this region did not disrupt the transport of gB, indicating that its function during gB transport is not sequence dependent. Native gB is also transported to the nuclear membrane of transfected cells. gB lacking as many as 67 amino acids from the C terminus of its cytoplasmic domain continued to be transported to the nuclear membrane at apparently normal levels, indicating that the cytoplasmic domain of gB is not required for nuclear membrane localization.


Sign in / Sign up

Export Citation Format

Share Document