scholarly journals Heteroduplex mobility assay and phylogenetic analysis of V3 region sequences of human immunodeficiency virus type 1 isolates from Gulu, northern Uganda. The Italian-Ugandan Cooperation AIDS Program.

1995 ◽  
Vol 69 (12) ◽  
pp. 7971-7981 ◽  
Author(s):  
L Buonaguro ◽  
E Del Guadio ◽  
M Monaco ◽  
D Greco ◽  
P Corti ◽  
...  
1997 ◽  
Vol 13 (7) ◽  
pp. 625-627 ◽  
Author(s):  
DOMINIC E. DWYER ◽  
YING CHUN GE ◽  
BIN WANG ◽  
WAYNE V. BOLTON ◽  
JOE G. McCORMACK ◽  
...  

FEBS Letters ◽  
1999 ◽  
Vol 454 (1-2) ◽  
pp. 47-52 ◽  
Author(s):  
Britt Losman ◽  
Marlene Biller ◽  
Sigvard Olofsson ◽  
Kristian Schønning ◽  
Ole Søgaard Lund ◽  
...  

2006 ◽  
Vol 80 (10) ◽  
pp. 4909-4920 ◽  
Author(s):  
Mike Westby ◽  
Marilyn Lewis ◽  
Jeannette Whitcomb ◽  
Mike Youle ◽  
Anton L. Pozniak ◽  
...  

ABSTRACT Antagonists of the human immunodeficiency virus type 1 (HIV-1) coreceptor, CCR5, are being developed as the first anti-HIV agents acting on a host cell target. We monitored the coreceptor tropism of circulating virus, screened at baseline for coreceptor tropism, in 64 HIV-1-infected patients who received maraviroc (MVC, UK-427,857) as monotherapy for 10 days. Sixty-two patients harbored CCR5-tropic virus at baseline and had a posttreatment phenotype result. Circulating virus remained CCR5 tropic in 60/62 patients, 51 of whom experienced an HIV RNA reduction from baseline of >1 log10 copies/ml, indicating that CXCR4-using variants were not rapidly selected despite CCR5-specific drug pressure. In two patients, viral load declined during treatment and CXCR4-using virus was detected at day 11. No pretreatment factor predicted the emergence of CXCR4-tropic virus during maraviroc therapy in these two patients. Phylogenetic analysis of envelope (Env) clones from pre- and posttreatment time points indicated that the CXCR4-using variants probably emerged by outgrowth of a pretreatment CXCR4-using reservoir, rather than via coreceptor switch of a CCR5-tropic clone under selection pressure from maraviroc. Phylogenetic analysis was also performed on Env clones from a third patient harboring CXCR4-using virus prior to treatment. This patient was enrolled due to a sample labeling error. Although this patient experienced no overall reduction in viral load in response to treatment, the CCR5-tropic components of the circulating virus did appear to be suppressed while receiving maraviroc as monotherapy. Importantly, in all three patients, circulating virus reverted to predominantly CCR5 tropic following cessation of maraviroc.


1998 ◽  
Vol 72 (9) ◽  
pp. 7099-7107 ◽  
Author(s):  
Eun Ju Park ◽  
Luba K. Vujcic ◽  
Rita Anand ◽  
Theodore S. Theodore ◽  
Gerald V. Quinnan

ABSTRACT The escape of human immunodeficiency virus type 1 from effects of neutralizing antibodies was studied by using neutralization-resistant (NR) variants generated by growing the neutralization-sensitive (NS) wild-type MN virus in the presence of human serum with neutralizing antibodies, more than 99% of which were directed at the V3 region of gp120. The variants obtained had broad neutralization resistance to human sera, without limitation with respect to the V3 specificity of the sera. The molecular basis for the resistance was evaluated with molecularly cloned viruses, as well as with pseudoviruses expressing envelope glycoproteins of the NS and NR phenotypes. Nucleotide sequence analyses comparing NS and NR clones revealed a number of polymorphisms, including six in the V1/V2 region, two in C4/V5 of gp120, three in the leucine zipper (LZ) domain of gp41, and two in the second external putative α-helix region of gp41. A series of chimeras from NS and NRenv genes was constructed, and each was presented on pseudoviruses to locate the domain(s) which conferred the phenotypic changes. The neutralization phenotypes of the chimeric clones were found to be dependent on mutations in both the C4/V5 region of gp120 and the LZ region of gp41. Additionally, interaction between mutations in gp120 and gp41 was demonstrated in that a chimeric envgene consisting of a gp120 coding sequence from an NS clone and a gp41 sequence from an NR clone yielded a pseudovirus with minimal infectivity. The possible significance of predicted amino acid changes in these domains is discussed. The results indicate that polyvalent antibodies predominantly directed against V3 can induce NR through selection for mutations that alter interactions of other domains in the envelope complex.


2007 ◽  
Vol 82 (2) ◽  
pp. 903-916 ◽  
Author(s):  
Milloni B. Patel ◽  
Noah G. Hoffman ◽  
Ronald Swanstrom

ABSTRACT The V3 region of the human immunodeficiency virus type 1 gp120 Env protein is a key domain in Env due to its role in interacting with the coreceptors CCR5 and CXCR4. We examined potential subtype-specific V3 region differences by comparing patterns of amino acid variability and probing for subtype-specific structures using 11 anti-V3 monoclonal antibodies (V3 MAbs). Differences between the subtypes in patterns of variability were most evident in the stem and turn regions of V3 (positions 9 to 24), with the two subtypes being very similar in the base region. The characteristics of the binding of V3 MAbs to Env proteins of the subtype B virus JR-FL and the subtype C virus BR025 suggested three patterns, as each group of MAbs recognized a specific conformation- or sequence-based epitope. Viruses pseudotyped with Env from JR-FL and BR025 were resistant to neutralization by the V3 MAbs, although the replacement of the Env V3 region of the SF162 virus with the JR-FL V3 created a pseudotyped virus that was hypersensitive to neutralization. A single mutation in V3 (H13R) made this chimeric Env selectively resistant to one group of V3 MAbs, consistent with the mAb binding properties. We hypothesize that there are intrinsic differences in V3 conformation between subtype B and subtype C that are localized to the stem and turn regions and that these differences have two important biological consequences: first, subtype B and subtype C V3 regions can have subtype-specific epitopes that will inherently limit antibody cross-reactivity, and second, V3 conformational differences may potentiate the frequent evolution of R5- into X4-tropic variants of subtype B but limit subtype C virus from using the same mechanism to evolve X4-tropic variants as efficiently.


Sign in / Sign up

Export Citation Format

Share Document