scholarly journals The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter.

1997 ◽  
Vol 71 (3) ◽  
pp. 1747-1756 ◽  
Author(s):  
D J Pereira ◽  
N Muzyczka
1991 ◽  
Vol 11 (9) ◽  
pp. 4287-4296 ◽  
Author(s):  
L C Webster ◽  
R P Ricciardi

The 289R E1A protein of adenovirus stimulates transcription of early viral and certain cellular genes. trans-Activation requires residues 140 to 188, which encompass a zinc finger. Several studies have indicated that trans-activation by E1A is mediated through cellular transcription factors. In particular, the ability of the trans-dominant E1A point mutant hr5 (Ser-185 to Asn) to inhibit wild-type E1A trans-activation was proposed to result from the sequestration of a cellular factor. Using site-directed mutagenesis, we individually replaced every residue within and flanking the trans-activating domain with a conservative amino acid, revealing 16 critical residues. Six of the individual substitutions lying in a contiguous stretch C terminal to the zinc finger (carboxyl region183-188) imparted a trans-dominant phenotype. trans-Dominance was even produced by deletion of the entire carboxyl region183-188. Conversely, an intact finger region147-177 was absolutely required for trans-dominance, since second-site substitution of every critical residue in this region abrogated the trans-dominant phenotype of the hr5 protein. These data indicate that the finger region147-177 bind a limiting cellular transcription factor and that the carboxyl region183-188 provides a separate and essential function. In addition, we show that four negatively charged residues within the trans-activating domain do not comprise a distinct acidic activating region. We present a model in which the trans-activating domain of E1A binds to two different cellular protein targets through the finger and carboxyl regions.


1991 ◽  
Vol 11 (9) ◽  
pp. 4287-4296
Author(s):  
L C Webster ◽  
R P Ricciardi

The 289R E1A protein of adenovirus stimulates transcription of early viral and certain cellular genes. trans-Activation requires residues 140 to 188, which encompass a zinc finger. Several studies have indicated that trans-activation by E1A is mediated through cellular transcription factors. In particular, the ability of the trans-dominant E1A point mutant hr5 (Ser-185 to Asn) to inhibit wild-type E1A trans-activation was proposed to result from the sequestration of a cellular factor. Using site-directed mutagenesis, we individually replaced every residue within and flanking the trans-activating domain with a conservative amino acid, revealing 16 critical residues. Six of the individual substitutions lying in a contiguous stretch C terminal to the zinc finger (carboxyl region183-188) imparted a trans-dominant phenotype. trans-Dominance was even produced by deletion of the entire carboxyl region183-188. Conversely, an intact finger region147-177 was absolutely required for trans-dominance, since second-site substitution of every critical residue in this region abrogated the trans-dominant phenotype of the hr5 protein. These data indicate that the finger region147-177 bind a limiting cellular transcription factor and that the carboxyl region183-188 provides a separate and essential function. In addition, we show that four negatively charged residues within the trans-activating domain do not comprise a distinct acidic activating region. We present a model in which the trans-activating domain of E1A binds to two different cellular protein targets through the finger and carboxyl regions.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Anna Lisa Remoli ◽  
Giulia Marsili ◽  
Edvige Perrotti ◽  
Chiara Acchioni ◽  
Marco Sgarbanti ◽  
...  

ABSTRACTIn addition to its ability to regulate HIV-1 promoter activation, the viral transactivator Tat also functions as a determinant of pathogenesis and disease progression by directly and indirectly modulating the host anti-HIV response, largely through the capacity of Tat to interact with and modulate the activities of multiple host proteins. We previously demonstrated that Tat modulated both viral and host transcriptional machinery by interacting with the cellular transcription factor interferon regulatory factor 1 (IRF-1). In the present study, we investigated the mechanistic basis and functional significance of Tat−IRF-1 interaction and demonstrate that Tat dramatically decreased IRF-1 protein stability. To accomplish this, Tat exploited the cellular HDM2 (human double minute 2 protein) ubiquitin ligase to accelerate IRF-1 proteasome-mediated degradation, resulting in a quenching of IRF-1 transcriptional activity during HIV-1 infection. These data identify IRF-1 as a new target of Tat-induced modulation of the cellular protein machinery and reveal a new strategy developed by HIV-1 to evade host immune responses.IMPORTANCECurrent therapies have dramatically reduced morbidity and mortality associated with HIV infection and have converted infection from a fatal pathology to a chronic disease that is manageable via antiretroviral therapy. Nevertheless, HIV-1 infection remains a challenge, and the identification of useful cellular targets for therapeutic intervention remains a major goal. The cellular transcription factor IRF-1 impacts various physiological functions, including the immune response to viral infection. In this study, we have identified a unique mechanism by which HIV-1 evades IRF-1-mediated host immune responses and show that the viral protein Tat accelerates IRF-1 proteasome-mediated degradation and inactivates IRF-1 function. Restoration of IRF-1 functionality may thus be regarded as a potential strategy to reinstate both a direct antiviral response and a more broadly acting immune regulatory circuit.


Science ◽  
1986 ◽  
Vol 232 (4751) ◽  
pp. 755-759 ◽  
Author(s):  
K. Jones ◽  
J. Kadonaga ◽  
P. Luciw ◽  
R Tjian

Sign in / Sign up

Export Citation Format

Share Document