scholarly journals Characterization of the Molecular Mechanism of Defective Interfering RNA-Mediated Symptom Attenuation in Tombusvirus-Infected Plants

1998 ◽  
Vol 72 (7) ◽  
pp. 6251-6256 ◽  
Author(s):  
Zoltán Havelda ◽  
György Szittya ◽  
József Burgyán

ABSTRACT Different tombusviruses were able to support the replication of either homologous or heterologous defective interfering (DI) RNAs, and those infected plants usually developed typical attenuated symptoms. However, in some helper virus-DI RNA combinations the inoculated plants were necrotized, although they contained a high level of DI RNA, suggesting that the accumulation of DI RNA and the resulting suppression of genomic RNA replication were not directly responsible for the symptom attenuation. Moreover, the 19-kDa protein product of ORF 5, which is known to play a crucial role in necrotic symptom development, accumulated at the same level in the infected plants in the presence of protective homologous DI RNA and in the presence of nonprotective heterologous DI RNA. It was also demonstrated, by chimeric helper viruses, that the ability of heterologous DI RNA to protect the virus-infected plants against systemic necrosis is determined by the 5′-proximal region of the helper virus genome. The results presented suggest that DI RNA-mediated protection did not operate via the specific inhibition of 19-kDa protein expression but, more likely, DI RNAs in protective DI-helper virus combinations specifically interacted with viral products, preventing the induction of necrotic symptoms.

Cell ◽  
1987 ◽  
Vol 51 (3) ◽  
pp. 427-433 ◽  
Author(s):  
Bradley I. Hillman ◽  
James C. Carrington ◽  
Thomas J. Morris

2000 ◽  
Vol 74 (7) ◽  
pp. 3156-3165 ◽  
Author(s):  
Richard Molenkamp ◽  
Babette C. D. Rozier ◽  
Sophie Greve ◽  
Willy J. M. Spaan ◽  
Eric J. Snijder

ABSTRACT Equine arteritis virus (EAV), the type member of the family Arteriviridae, is a single-stranded RNA virus with a positive-stranded genome of approximately 13 kb. EAV uses a discontinuous transcription mechanism to produce a nested set of six subgenomic mRNAs from which its structural genes are expressed. We have generated the first documented arterivirus defective interfering (DI) RNAs by serial undiluted passaging of a wild-type EAV stock in BHK-21 cells. A cDNA copy of the smallest DI RNA (5.6 kb) was cloned. Upon transfection into EAV-infected BHK-21 cells, transcripts derived from this clone (pEDI) were replicated and packaged. Sequencing of pEDI revealed that the DI RNA was composed of three segments of the EAV genome (nucleotides 1 to 1057, 1388 to 1684, and 8530 to 12704) which were fused in frame with respect to the replicase reading frame. Remarkably, this DI RNA has retained all of the sequences encoding the structural proteins. By insertion of the chloramphenicol acetyltransferase reporter gene in the DI RNA genome, we were able to delimitate the sequences required for replication/DI-based transcription and packaging of EAV DI RNAs and to reduce the maximal size of a replication-competent EAV DI RNA to approximately 3 kb.


Author(s):  
Richard Molenkamp ◽  
Babette C. D. Rozier ◽  
Sophie Greve ◽  
Willy J. M. Spaan ◽  
Eric J. Snijder

Sign in / Sign up

Export Citation Format

Share Document