systemic necrosis
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 3)

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2454
Author(s):  
Marta Budziszewska ◽  
Przemysław Wieczorek

Tomato torrado virus (ToTV) induces severe systemic necrosis in Solanum lycopersicum. This work aimed at describing the genetic variability of necrosis-inducing ToTV-Wal’17 collected in 2017, derived from the ToTV-Wal’03 after long-term passages in plants. Sequence analyses of the ToTV-Wal’17 indicated twenty-eight single nucleotide substitutions in coding sequence of both RNAs, twelve of which resulted in amino acid changes in viral polyproteins. Moreover the sequencing data revealed that the 3’UTR of ToTV-Wal’17 RNA1 was 394 nts shorter in comparison to Wal’03. The performed sequence analyses revealed that 3’UTR of RNA1 of ToTV-Wal’17 is the most divergent across all previously described European isolates.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mi Sang Lim ◽  
Byoung-Eun Min ◽  
Sun Hee Choi

Saguaro cactus virus (SgCV, genus Carmovirus, family Tombusviridae) was first isolated from an asymptomatic giant saguaro cactus (Carnegiea gigantea) in Arizona, USA (Milbrath and Nelson, 1972). In November 2017, 30 asymptomatic grafted cactus plants (Gymnocalycium mihanovichii grafted onto Hylocereus trigonus) were randomly collected from a commercial market in Gyeonggi Province, South Korea. Total RNA was extracted from both the scions and rootstocks of the plants using an RNeasy Plant Mini Kit (Qiagen, Germany) then subjected to reverse transcription polymerase chain reaction (RT-PCR) using RevertAid reverse transcriptase (Thermo Scientific, USA), TaKaRa Taq (TaKaRa, Japan), and SgCV-CP primers (forward, 5′- ATGGACGCTAAGTATGCG-3′; reverse, 5′- TCAGAGCCTAGCAACATA-3′). A validated SgCV stock (PV 0734, DSMZ, Germany) was used as an RT-PCR positive control. Out of 30 samples each of the rootstocks and scions, 21 and 8 produced, respectively, an amplicon at the expected size of 1,035 bp. The amplicons from three samples were cloned into a pGEM-T easy vector (Promega, USA), and three clones of each sample were sequenced (Macrogen, South Korea). The amplicons shared 100 % sequence identity with each other. BLASTn analysis showed that the sequence shared the highest identity at 66.3% with SgCV isolate Arizona (GenBank U72332). For bioassay of the virus, sap from infected G. mihanovichii was mechanically inoculated on four indicator plant species. The virus induced local lesions in Chenopodium amaranticolor, C. quinoa, and Gomphrena globosa, and systemic necrosis including growth reduction in C. capitatum. These results are consistent with those reported on SgCV by Milbrath and Nelson (1972). For determination of the exact species of the virus, non-inoculated leaves of C. capitatum were harvested 21 days after mechanical inoculation and subjected to total RNA extraction using the RNeasy Plant Mini Kit (Qiagen). A cDNA library was prepared using TruSeq RNA sample preparation v2, and sequenced on a NovaSeq 6000 system sequencer (Macrogen, South Korea). A total of 137,393,766 raw reads were quality-trimmed, and assembled into 120,408 contigs with sizes ranging from 201 to 15,898 nt using the Trinity program (r20140717). The assembled contigs were screened against the NCBI viral genome database using BLASTn, and a single contig of 3,858 nt matched the SgCV (acc. number U72332, coverage 88%, identity 70.3%). The sequence was deposited in GenBank (SgCV-gm, MW590184) and contained five open reading frames (ORFs), which is consistent with those of SgCV reported by Weng and Xiong (1997). Using DNAMAN software (Lynnon Biosoft, Canada) the deduced amino acid sequences encoded by the ORFs were determined and their homology with respective ORF proteins of various carmoviruses was subsequently compared (Table S1). The deduced protein sequences shared the highest identity of 68.2 to 81% with those of the SgCV isolate Arizona. King et al. (2012) suggested respective artificial host range reactions and percentage of coat protein and polymerase amino acid sequence identities of less than 52% and 57% as criteria for species demarcation in Carmovirus. These features suggest that SgCV-gm should possibly be designated a new SgCV isolate. To the best of our knowledge, this is the first report of SgCV naturally infecting G. mihanovichii in South Korea. Further research is needed to gain more in-depth insight into the biological and pathological properties of this virus.


2021 ◽  
Author(s):  
Marta Budziszewska ◽  
Przemysław Wieczorek ◽  
Aleksandra Obrępalska-Stęplowska

Abstract Tomato torrado virus (ToTV) induces severe systemic necrosis in Solanum lycopersicum. This work aimed at describing the genetic variability of necrosis-inducing ToTV-Wal'17 collected in the 2017 year, derived from the ToTV-Wal'03 after long-term passages in plant. Sequence analyses of the ToTV-Wal`17 indicated twenty-eight single nucleotide substitutions in coding sequence of both RNAs, twelve of which resulted in amino acid changes in viral polyproteins. Moreover the sequencing data revealed that the 3'UTR of ToTV-Wal'17 RNA1 was 394 nts shorter in comparison to Wal'03. The performed sequence analyses pointed that 3'UTR of RNA1of ToTV-Wal'17 is the most divergent across all previously described European isolates.


Plant Disease ◽  
2021 ◽  
Author(s):  
Despoina Beris ◽  
Ioanna Malandraki ◽  
Oxana Kektsidou ◽  
Christina Varveri

During winter 2020-2021, a severe virus-like disease outbreak was observed in eggplant (Solanum melongena L.) hybrids ‘Monarca’ (F1) and ‘Angela’ (F1) growing under protected conditions in Heraklion, Crete, Greece. In three greenhouses, the percentage of infected plants reached 100% leading to crop abandonment. Symptoms included leaf mottling and yellowing accompanied with plant stunting and apical necrosis. Extensive fruit damage was due to severe malformation and necrotic lesions on the calyx, peduncle and the endocarp (Sup. Fig. 1). To identify the causal agent, total RNA was extracted from a symptomatic eggplant fruit with PureLink™ RNA Mini Kit (ThermoFisher Scientific, USA), which was subjected to high throughput sequencing (HTS) analysis (Illumina Inc., USA). The de novo assembly of the obtained 25 million, 75 bp, single-end reads with Geneious Prime (Biomatters, New Zealand) and the annotation of the resulting contigs with BLASTn revealed the presence of only eggplant mottled crinkle virus (EMCV, genus Tombusvirus) in the sample. The assembled sequence of EMCV isolate from Greece (EMCV-Gr, GenBank Acc. No. MW716271) was 4764 bp in length, covering the full genome of the virus and showing 96.3 % nucleotide (nt) identity with an isolate identified from calla lilies (Zantedeschia sp.) in Taiwan (AM711119). Five symptomatic and seven asymptomatic ‘Monarca’ (F1) eggplants, as well as two symptomatic ‘Angela’ (F1) eggplants were tested by RT-PCR that targeted the capsid protein gene of the virus (Dombrovsky et al., 2009). PCR products of 1184 bp were obtained from the seven symptomatic samples and their Sanger sequencing revealed 100 % nt identity with the respective HTS-derived EMCV sequence. No product was obtained from the analysis of the asymptomatic samples. Mechanical sap transmission of the HTS analysed eggplant sample resulted in necrotic local lesions on Nicotiana rustica and Chenopodium quinoa, necrotic local lesions plus systemic necrosis on N. tabacum cv. Xanthi-nc, cv. Samsun and N. glutinosa, systemic collapse of N. benthamiana, and leaf mottling plus stunting of pepper cv. Yolo Wonder plants (Sup. Fig. 1I). Although no symptoms were observed on tomato plants cv. Ace 55, systemic EMCV infection was detected by RT-PCR. To establish the relationship between the disease and EMCV, infected tissue from N. benthamiana plants was used for the mechanical inoculation of virus-tested negative eggplant seedlings cv. Black beauty. Necrotic spots, shoot necrosis, leaf mottling and mosaic, symptoms were observed (Sup. Fig. J) on the test plants ten days post inoculation and the presence of the virus was confirmed by RT-PCR as described. To the best of our knowledge this is the first report of EMCV infecting eggplant in Greece. The virus was originally described in eggplant in Lebanon (Makkouk et al., 1981) and it is mainly present outside the European Union (EU) territory, including India, Japan, Taiwan, Iran and Israel (Dombrovsky et al., 2009 and references therein). A latent EMCV infection was detected in pear in Italy (Russo et al., 2002) and the virus is considered by the European Food Safety Authority as an exotic virus of the genera Cydonia, Malus, and Pyrus that meets all the criteria to qualify as an EU quarantine pest (Bragard et al., 2019). Τhe severity of the disease observed in Crete leading to the destruction of eggplant greenhouse cultivations, constitutes EMCV as an emerging threat to eggplant and other solanaceous crops for Greece and Europe.


2021 ◽  
Vol 22 (2) ◽  
pp. 923
Author(s):  
Mingjun Li ◽  
Changchang Li ◽  
Kairong Jiang ◽  
Ke Li ◽  
Junlei Zhang ◽  
...  

V2 proteins encoded by some whitefly-transmitted geminiviruses were reported to be functionally important proteins. However, the functions of the V2 protein of tobacco curly shoot virus (TbCSV), a monopartite begomovirus that causes leaf curl disease on tomato and tobacco in China, remains to be characterized. In our report, an Agrobacterium infiltration-mediated transient expression assay indicated that TbCSV V2 can suppress local and systemic RNA silencing and the deletion analyses demonstrated that the amino acid region 1–92 of V2, including the five predicted α-helices, are required for local RNA silencing suppression. Site-directed substitutions showed that the conserved basic and ring-structured amino acids in TbCSV V2 are critical for its suppressor activity. Potato virus X-mediated heteroexpression of TbCSV V2 in Nicotiana benthamiana induced hypersensitive response-like (HR-like) cell death and systemic necrosis in a manner independent of V2′s suppressor activity. Furthermore, TbCSV infectious clone mutant with untranslated V2 protein (TbCSV∆V2) could not induce visual symptoms, and coinfection with betasatellite (TbCSB) could obviously elevate the viral accumulation and symptom development. Interestingly, symptom recovery occurred at 15 days postinoculation (dpi) and onward in TbCSV∆V2/TbCSB-inoculated plants. The presented work contributes to understanding the RNA silencing suppression activity of TbCSV V2 and extends our knowledge of the multifunctional role of begomovirus-encoded V2 proteins during viral infections.


2020 ◽  
Vol 71 (18) ◽  
pp. 5656-5668
Author(s):  
Ting Yang ◽  
Long Qiu ◽  
Wanying Huang ◽  
Qianyi Xu ◽  
Jialing Zou ◽  
...  

Abstract Plant symptoms are derived from specific interactions between virus and host components. However, little is known about viral or host factors that participate in the establishment of systemic necrosis. Here, we showed that helper component proteinase (HCPro), encoded by Chilli veinal mottle virus (ChiVMV), could directly interact with catalase 1 (CAT1) and catalase 3 (CAT3) in the cytoplasm of tobacco (Nicotiana tabacum) plants to facilitate viral infection. In vitro, the activities of CAT1 and CAT3 were inhibited by the interaction between HCPro and CATs. The C-terminus of HCPro was essential for their interaction and was also required for the decrease of enzyme activities. Interestingly, the mRNA and protein level of CATs were up-regulated in tobacco plants in response to ChiVMV infection. Nicotiana tabacum plants with HCPro overexpression or CAT1 knockout were more susceptible to ChiVMV infection, which was similar to the case of H2O2-pre-treated plants, and the overexpression of CAT1 inhibited ChiVMV accumulation. Also, neither CAT1 nor CAT3 could affect the RNA silencing suppression (RSS) activity of HCPro. Our results showed that the interaction between HCPro and CATs promoted the development of plant systemic necrosis, revealing a novel role for HCPro in virus infection and pathogenicity.


2020 ◽  
Vol 94 (11) ◽  
Author(s):  
Károly Fátyol ◽  
Katalin Anna Fekete ◽  
Márta Ludman

ABSTRACT Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference (RNAi) pathway and innate pattern-triggered immune (PTI) responses. While details of the former process have been well established in recent years, the latter are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross talk between the different antiviral mechanisms. Here, we demonstrate that dsRNA-binding protein 2 (DRB2) of Nicotiana benthamiana plays a direct role in potato virus X (PVX)-elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RNA-dependent polymerase 6 (RDR6)-dependent dsRNAs play an important role in the triggering of PVX-induced systemic necrosis. Based on our data, a model is formulated whereby competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection. IMPORTANCE Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, noninfected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here, we provide evidence that the dsRNA-binding protein 2 of Nicotiana benthamiana plays an important role in virus-induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.


2019 ◽  
Vol 109 (9) ◽  
pp. 1638-1647
Author(s):  
Ik-Hyun Kim ◽  
Hye-Kyoung Ju ◽  
Junsu Gong ◽  
Jae-Yeong Han ◽  
Eun-Young Seo ◽  
...  

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5′, central, and 3′ domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5′ 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis ‘Norang’, which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1220-1227
Author(s):  
Xue Feng ◽  
Gardenia E. Orellana ◽  
James C. Green ◽  
Michael J. Melzer ◽  
John S. Hu ◽  
...  

Lima bean (Phaseolus lunatus) is a popular cultivated legume vegetable grown in the United States for dry bean or canned bean production. In 2017, two symptomatic P. lunatus plants exhibiting mosaic, vein banding, and growth retardation were collected in a public garden in Honolulu, HI. Both samples contained bean common mosaic virus (BCMV), and the two BCMV isolates were subjected to biological characterization on a panel of 11 differential cultivars of common bean (P. vulgaris), and to molecular characterization through whole genome sequencing. Both samples contained nearly identical BCMV sequences, named BCMV-A1, which, in turn, were 93% identical to the peanut stripe virus strain of BCMV. BCMV-A1 induced an unusually severe systemic necrosis in cultivar ‘Dubbele Witte’, and pronounced necrotic or chlorotic reaction in inoculated leaves of five other bean differentials. BCMV-A1 was able to partially overcome resistance alleles bc-1 and bc-2 expressed singly in common bean, inducing no systemic symptoms. Phylogenetic analysis of the BCMV-A1 sequence, and distinct biological reactions in common bean differentials suggested that BCMV-A1 represented a new lima bean strain of BCMV. In 2017, two BCMV isolates were collected in Idaho from common bean, and based on partial genome sequences were found 99% identical to the BCMV-A1 sequence. The data suggest that the lima bean strain of BCMV may have a wider circulation, including common bean as a host. This new strain of BCMV may thus pose a significant threat to common bean production.


2019 ◽  
Vol 109 (5) ◽  
pp. 904-912 ◽  
Author(s):  
Junsu Gong ◽  
Hye-Kyoung Ju ◽  
Ik-Hyun Kim ◽  
Eun-Young Seo ◽  
In-Sook Cho ◽  
...  

Infectious clones were generated from 17 new Korean radish isolates of Turnip mosaic virus (TuMV). Phylogenetic analysis indicated that all new isolates, and three previously characterized Korean radish isolates, belong to the basal-BR group (indicating that the pathotype can infect both Brassica and Raphanus spp.). Pairwise analysis revealed genomic nucleotide and polyprotein amino acid identities of >87.9 and >95.7%, respectively. Five clones (HJY1, HJY2, KIH2, BE, and prior isolate R007) had lower sequence identities than other isolates and produced mild symptoms in Nicotiana benthamiana. These isolates formed three distinct sequence classes (HJY1/HJY2/R007, KIH2, and BE), and several differential amino acid residues (in P1, P3, 6K2, and VPg) were present only in mild isolates HJY1, HJY2, and R007. The remaining isolates all induced systemic necrosis in N. benthamiana. Four mild isolates formed a phylogenetic subclade separate from another subclade including all of the necrosis-inducing isolates plus mild isolate KIH2. Symptom severity in radish and Chinese cabbage genotypes was not correlated with pathogenicity in N. benthamiana; indeed, Chinese cabbage cultivar Norang was not infected by any isolate, whereas Chinese cabbage cultivar Chusarang was uniformly susceptible. Four isolates were unable to infect radish cultivar Iljin, but no specific amino acid residues were correlated with avirulence. These results may lead to the identification of new resistance genes against TuMV.


Sign in / Sign up

Export Citation Format

Share Document