scholarly journals Herpes Simplex Virus Type 1 Corneal Infection Results in Periocular Disease by Zosteriform Spread

2001 ◽  
Vol 75 (11) ◽  
pp. 5069-5075 ◽  
Author(s):  
Bretton C. Summers ◽  
Todd P. Margolis ◽  
David A. Leib

ABSTRACT In humans and animal models of herpes simplex virus infection, zosteriform skin lesions have been described which result from anterograde spread of the virus following invasion of the nervous system. Such routes of viral spread have not been fully examined following corneal infection, and the possible pathologic consequences of such spread are unknown. To investigate this, recombinant viruses expressing reporter genes were generated to quantify and correlate gene expression with replication in eyes, trigeminal ganglia, and periocular tissue. Reporter activity peaked in eyes 24 h postinfection and rapidly fell to background levels by 48 h despite the continued presence of viral titers. Reporter activity rose in the trigeminal ganglia at 60 h and peaked at 72 h, concomitant with the appearance and persistence of infectious virus. Virus was present in the periocular skin from 24 h despite the lack of significant reporter activity until 84 h postinfection. This detection of reporter activity was followed by the onset of periocular disease on day 4. Corneal infection with a thymidine kinase-deleted reporter virus displayed a similar profile of reporter activity and viral titer in the eyes, but little or no detectable activity was observed in trigeminal ganglia or periocular tissue. In addition, no periocular disease symptoms were observed. These findings demonstrate that viral infection of periocular tissue and subsequent disease development occurs by zosteriform spread from the cornea to the periocular tissue via the trigeminal ganglion rather than by direct spread from cornea to the periocular skin. Furthermore, clinical evidence is discussed suggesting that a similar mode of spreading and disease occurs in humans following primary ocular infection.

2002 ◽  
Vol 76 (8) ◽  
pp. 3615-3625 ◽  
Author(s):  
Tammie L. Keadle ◽  
Lynda A. Morrison ◽  
Jessica L. Morris ◽  
Jay S. Pepose ◽  
Patrick M. Stuart

ABSTRACT Immunization of mice with herpes simplex virus type 1 (HSV-1) mutant viruses containing deletions in the gene for virion host shutoff (vhs) protein diminishes primary and recurrent corneal infection with wild-type HSV-1. vhs mutant viruses are severely attenuated in vivo but establish latent infections in sensory neurons. A safer HSV-1 mutant vaccine strain, Δ41Δ29, has combined vhs and replication (ICP8−) deficits and protects BALB/c mice against primary corneal infection equivalent to a vhs− strain (BGS41). Here, we tested the hypothesis that Δ41Δ29 can protect as well as BGS41 in a therapeutic setting. Because immune response induction varies with the mouse and virus strains studied, we first determined the effect of prophylactic Δ41Δ29 vaccination on primary ocular infection of NIH inbred mice with HSV-1 McKrae, a model system used to evaluate therapeutic vaccines. In a dose-dependent fashion, prophylactic Δ41Δ29 vaccination decreased postchallenge tear film virus titers and ocular disease incidence and severity while eliciting high levels of HSV-specific antibodies. Adoptive transfer studies demonstrated a dominant role for immune serum and a lesser role for immune cells in mediating prophylactic protection. Therapeutically, vaccination with Δ41Δ29 effectively reduced the incidence of UV-B-induced recurrent virus shedding in latently infected mice. Therapeutic Δ41Δ29 and BGS41 vaccination decreased corneal opacity and delayed-type hypersensitivity responses while elevating antibody titers, compared to controls. These data indicate that replication is not a prerequisite for generation of therapeutic immunity by live HSV mutant virus vaccines and raise the possibility that genetically tailored replication-defective viruses may make effective and safe therapeutic vaccines.


2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Audra J. Charron ◽  
Stephen L. Ward ◽  
Brian J. North ◽  
Stacey Ceron ◽  
David A. Leib

ABSTRACTHerpes simplex virus 1 (HSV-1) cycles between phases of latency in sensory neurons and replication in mucosal sites. HSV-1 encodes two key proteins that antagonize the shutdown of host translation, US11 through preventing PKR activation and ICP34.5 through mediating dephosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). While profound attenuation of ICP34.5 deletion mutants has been repeatedly demonstrated, a role for US11 in HSV-1 pathogenesis remains unclear. We therefore generated an HSV-1 strain 17 US11-null virus and examined its propertiesin vitroandin vivo. In U373 glioblastoma cells, US11 cooperated with ICP34.5 to prevent eIF2α phosphorylation late in infection. However, the effect was muted in human corneal epithelial cells (HCLEs), which did not accumulate phosphorylated eIF2α unless both US11 and ICP34.5 were absent. Low levels of phosphorylated eIF2α correlated with continued protein synthesis and with the ability of virus lacking US11 to overcome antiviral immunity in HCLE and U373 cells. Neurovirulence following intracerebral inoculation of mice was not affected by the deletion of US11. In contrast, the time to endpoint criteria following corneal infection was greater for the US11-null virus than for the wild-type virus. Replication in trigeminal ganglia and periocular tissue was promoted by US11, as was periocular disease. The establishment of latency and the frequency of virus reactivation from trigeminal ganglia were unaffected by US11 deletion, although emergence of the US11-null virus occurred with slowed kinetics. Considered together, the data indicate that US11 facilitates the countering of antiviral response of infected cells and promotes the efficient emergence of virus following reactivation.IMPORTANCEAlphaherpesviruses are ubiquitous DNA viruses and include the human pathogens herpes simplex virus 1 (HSV-1) and HSV-2 and are significant causes of ulcerative mucosal sores, infectious blindness, encephalitis, and devastating neonatal disease. Successful primary infection and persistent coexistence with host immune defenses are dependent on the ability of these viruses to counter the antiviral response. HSV-1 and HSV-2 and other primate viruses within theSimplexvirusgenus encode US11, an immune antagonist that promotes virus production by preventing shutdown of protein translation. Here we investigated the impact of US11 deletion on HSV-1 growthin vitroand pathogenesisin vivo. This work supports a role for US11 in pathogenesis and emergence from latency, elucidating immunomodulation by this medically important cohort of viruses.


2002 ◽  
Vol 96 (5) ◽  
pp. 1168-1174 ◽  
Author(s):  
Ichiro Takasaki ◽  
Atsushi Sasaki ◽  
Tsugunobu Andoh ◽  
Hiroshi Nojima ◽  
Kimiyasu Shiraki ◽  
...  

Background Postherpetic neuralgia is pain that persists long after the disappearance of the cutaneous lesions of herpes zoster. However, the mechanisms of this delayed pain are unclear. Herpes simplex virus infection induces cutaneous lesions and pain-related responses in mice. The authors examined whether such responses would persist after the disappearance of the cutaneous lesions and whether some analgesics would be effective against them. Methods Female BALB/c mice were inoculated with herpes simplex virus type 1 on the unilateral hind paw. Pain-related responses of hind paw were determined using von Frey filaments. Beginning 5 days after inoculation, mice were given perorally the antiherpes agent acyclovir five times a day for 7 days. Effects of morphine (3-5 mg/kg subcutaneously), gabapentin (30-100 mg/kg perorally), mexiletine (10-30 mg/kg intraperitoneally), and diclofenac (30 mg/kg intraperitoneally) on pain-related responses were examined on days 25-35 after inoculation. Results Viral inoculation induced cutaneous lesions and pain-related responses beginning on day 5 after inoculation. Acyclovir treatment healed all skin lesions by day 15 after inoculation. Approximately half of the mice given acyclovir showed pain-related responses at least until day 40 after inoculation. Morphine, gabapentin, and mexiletine dose-dependently inhibited pain-related responses, but diclofenac had no effects. Conclusions The authors show a mouse model of delayed postherpetic pain. This may be useful for manifesting the mechanisms of postherpetic neuralgia and the factors contributing to the transition from acute herpetic pain to delayed postherpetic pain. This may also be useful for the development of new analgesics against postherpetic neuralgia.


2000 ◽  
Vol 74 (2) ◽  
pp. 934-943 ◽  
Author(s):  
Rui Lu ◽  
Vikram Misra

ABSTRACT The cascade of herpes simplex virus (HSV) gene expression that results in viral replication begins with the activation of viral immediate-early (IE) genes by the virion-associated protein VP16. VP16 on its own is inefficient at associating with complexes formed on IE gene promoters and depends upon the cellular factor HCF for its activity. In this respect VP16 mimics the host basic leucine zipper (bZIP) protein Luman, which also requires HCF for activating transcription. Our objective is to explore interactions between Luman and HCF and to determine if they play a role in the biology of herpesviruses. In this report we show that in cultured cells ectopically expressed Luman was retained in the cytoplasm, where it colocalized with Calnexin, a protein normally associated with the endoplasmic reticulum (ER). Retention of Luman in the ER depends on a hydrophobic segment of the protein that probably serves as a transmembrane domain. Deletion of this domain changed the intracellular location of Luman so that most of the mutant protein was in the nucleus of cells. While HCF was present in the nucleus of most cells, in cells expressing Luman it was retained in the cytoplasm where the two proteins colocalized. This cytoplasmic association of Luman and HCF could also be demonstrated in neurons in trigeminal ganglia removed from cattle soon after death. Cells in tissue culture that expressed Luman, but not a mutant form of the protein that fails to bind HCF, were resistant to a productive infection with HSV type 1 (HSV-1). We hypothesize that similar Luman-HCF interactions in sensory neurons in trigeminal ganglia result in the suppression of viral replication and the establishment of latency. Interestingly, Luman could activate the promoters of IE110 and LAT, two genes that are critical for reactivation of HSV-1 from latency. This suggests a role for Luman in the reactivation process as well.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Juan Fontana ◽  
Doina Atanasiu ◽  
Wan Ting Saw ◽  
John R. Gallagher ◽  
Reagan G. Cox ◽  
...  

ABSTRACTAll enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.IMPORTANCEThe herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope with the host membrane to start an infection. This process is mediated by a viral surface protein that transitions from an initial conformation (prefusion) to a final, more stable, conformation (postfusion). However, the prefusion conformation of the herpesvirus fusion protein (gB) is poorly understood. To elucidate the structure of the prefusion conformation of HSV type 1 gB, we have employed cryo-electron microscopy to study gB molecules expressed on the surface of vesicles. Using different approaches to label gB’s domains allowed us to model the structures of the prefusion and intermediate conformations of gB. Overall, our findings enhance our understanding of HSV fusion and lay the groundwork for the development of new ways to prevent and block HSV infection.


1987 ◽  
Vol 317 (23) ◽  
pp. 1427-1432 ◽  
Author(s):  
Kenneth D. Croen ◽  
Jeffrey M. Ostrove ◽  
Lubo J. Dragovic ◽  
John E. Smialek ◽  
Stephen E. Straus

Sign in / Sign up

Export Citation Format

Share Document